cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A157483 Numbers k such that k-1 and k+1 are divisible by exactly 3 primes, counted with multiplicity.

Original entry on oeis.org

19, 29, 43, 51, 67, 69, 77, 115, 171, 173, 187, 189, 237, 243, 245, 267, 274, 283, 285, 291, 317, 344, 355, 386, 403, 405, 411, 424, 427, 429, 435, 437, 476, 507, 597, 603, 604, 605, 638, 653, 664, 669, 723, 763, 776, 787, 789, 846, 891, 893, 907, 926, 963
Offset: 1

Views

Author

Keywords

Comments

Omega(a(n) - 1) = Omega(a(n) + 1) = 3, where Omega(n)=A001222(n). In general twin k-almost prime pairs are defined by Omega(a(n) - 1) = Omega(a(n) + 1) = k. Twin 1-almost primes are twin prime pairs (A014574). - Redjan Shabani, Jul 20 2012

Examples

			19 is a term: 19-1 = 18 = 2*3*3 and 19+1 = 20 = 2*2*5.
		

Crossrefs

Programs

Extensions

More terms from Emeric Deutsch, Mar 03 2009

A157484 Numbers k such that k+-1 are divisible by exactly 4 primes, counted with multiplicity.

Original entry on oeis.org

55, 89, 151, 197, 233, 249, 295, 307, 329, 341, 343, 349, 461, 489, 491, 569, 571, 665, 713, 739, 775, 851, 857, 859, 869, 871, 949, 1013, 1015, 1061, 1097, 1111, 1149, 1191, 1205, 1207, 1209, 1211, 1219, 1255, 1275, 1277, 1291, 1303, 1315, 1421, 1431, 1449, 1483
Offset: 1

Views

Author

Keywords

Examples

			55 is a term: 55-1 = 54 = 2*3*3*3 and 55+1 = 56 = 2*2*2*7.
		

Crossrefs

Programs

A256388 Numbers n such that a single prime is the arithmetic mean of 2 semiprimes whose difference is 2*n.

Original entry on oeis.org

1, 3, 9, 15, 27, 39, 57, 69, 99, 105, 135, 147, 177, 189, 195, 225, 237, 267, 279, 309, 345, 417, 429, 459, 519, 567, 597, 615, 639, 657, 807, 819, 825, 855, 879, 1017, 1029, 1047, 1059, 1089, 1149, 1227, 1275, 1287, 1299, 1317, 1425, 1449, 1479, 1485, 1605
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

That is, there is a single prime p, such that p+n and p-n are both semiprime.
Subsequence of A256389.

Examples

			A256381 is the list of numbers n such that n-3 and n+3 are semiprimes, and it contains a single prime, hence 3 is in the sequence.
		

Crossrefs

Cf. A256387 (no prime), A256389 (one or more primes).

Formula

Conjecture: a(n) = A001359(n)-2. - Benedict W. J. Irwin, Apr 26 2016

A157485 Numbers k such that k-+1 are divisible by exactly 5 primes, counted with multiplicity.

Original entry on oeis.org

271, 593, 701, 751, 919, 1169, 1241, 1639, 1649, 1673, 1711, 1751, 2071, 2311, 2393, 2549, 2551, 2609, 2729, 2861, 2863, 2897, 2899, 3185, 3331, 3569, 3631, 3823, 3849, 3851, 3943, 3977, 4231, 4265, 4649, 4663, 5071, 5081, 5237, 5239, 5391, 5551, 5561, 5585, 5741
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    q=5;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,7!}];lst
    Select[Range[6000],PrimeOmega[#+{1,-1}]=={5,5}&] (* Harvey P. Dale, Jun 05 2021 *)
    Mean/@SequencePosition[PrimeOmega[Range[6000]],{5,,5}] (* _Harvey P. Dale, Oct 19 2023 *)
  • PARI
    is(k) = bigomega(k-1)==5 && bigomega(k+1)==5; \\ Jinyuan Wang, Mar 22 2020

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A256381 Numbers n such that n-3 and n+3 are semiprimes.

Original entry on oeis.org

7, 12, 18, 36, 52, 54, 88, 90, 118, 126, 158, 180, 206, 212, 216, 218, 250, 256, 262, 292, 298, 302, 306, 324, 326, 332, 338, 358, 368, 374, 410, 414, 448, 450, 508, 514, 530, 532, 540, 548, 556, 562, 576, 586, 594, 626, 632, 652, 682, 684, 692, 700, 710, 720
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

All but the first term are even.

Crossrefs

Cf. A001358 (semiprimes).
Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).
Cf. A256382 (n-4 and n+4), A256383 (n-5 and n+5).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..750] | IsSemiprime(n+3) and IsSemiprime(n-3) ]; // Vincenzo Librandi, Mar 28 2015
  • Mathematica
    Select[Range[750], PrimeOmega[# + 3] == PrimeOmega[# - 3] == 2 &] (* Vincenzo Librandi, Mar 28 2015 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,800}],{1,,,_,,,1}][[All,1]]+3 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 21 2017 *)
  • PARI
    lista(nn,m=3) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}
    

A256382 Numbers n such that n-4 and n+4 are semiprimes.

Original entry on oeis.org

10, 18, 29, 30, 42, 53, 61, 73, 78, 81, 89, 90, 91, 115, 119, 125, 137, 138, 162, 165, 173, 181, 198, 205, 209, 210, 213, 217, 222, 258, 263, 291, 295, 299, 305, 323, 325, 330, 331, 390, 399, 407, 411, 441, 449, 450, 462, 477, 485, 489, 493, 497, 501, 515, 523
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

A117328 is the subsequence of primes.

Crossrefs

Cf. A001358 (semiprimes).
Cf. A117328 (with primes rather than semiprimes).
Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).
Cf. A256381 (n-3 and n+3), A256383 (n-5 and n+5).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..750] | IsSemiprime(n+4) and IsSemiprime(n-4) ]; // Vincenzo Librandi, Mar 29 2015
  • Mathematica
    Select[Range[600], PrimeOmega[# + 4] == PrimeOmega[# - 4] == 2 &] (* Vincenzo Librandi, Mar 29 2015 *)
    Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,600}],9,1],?(#[[1]]==#[[9]]==1&),{1},Heads->False]]+4 (* _Harvey P. Dale, Mar 29 2015 *)
  • PARI
    lista(nn,m=4) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}
    

A256383 Numbers n such that n-5 and n+5 are semiprimes.

Original entry on oeis.org

9, 20, 30, 44, 60, 82, 90, 116, 124, 128, 138, 150, 164, 182, 208, 210, 214, 242, 254, 294, 296, 300, 304, 314, 324, 334, 360, 366, 376, 386, 398, 408, 412, 422, 432, 442, 476, 506, 510, 522, 524, 532, 538, 540, 548, 578, 584, 586, 628, 674, 676, 684
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

It appears that there are no primes in this sequence.
If n is odd, one of n+5 and n-5 is divisible by 4, so unless n = 9 it can't be a semiprime. Thus all terms except 9 are even. - Robert Israel, Apr 13 2020

Crossrefs

Cf. A001358 (semiprimes).
Cf. A124936 (n-1 and n+1), A105571 (n-2 and n+2).
Cf. A256381 (n-3 and n+3), A256382 (n-4 and n+4).

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [6..700] | IsSemiprime(n+5) and IsSemiprime(n-5) ]; // Vincenzo Librandi, Mar 29 2015
  • Maple
    N:= 1000: # for terms <= N-5
    PP:= select(isprime, {seq(i,i=3..N/3,2)}):
    P:= select(`<=`,PP,floor(sqrt(N))):
    SP:= {}:
    for p in P do
      PP:= select(`<=`,PP,N/p);
      SP:= SP union map(`*`,PP,p);
    od:
    R:= {9} union (map(`+`,SP,5) intersect map(`-`,SP,5)):
    sort(convert(R,list)); # Robert Israel, Apr 13 2020
  • Mathematica
    Select[Range[2, 700], PrimeOmega[# + 5] == PrimeOmega[# - 5] == 2 &] (* Vincenzo Librandi, Mar 29 2015 *)
  • PARI
    lista(nn,m=5) = {for (n=m+1, nn, if (bigomega(n-m)==2 && bigomega(n+m)==2, print1(n, ", ")););}
    
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List([9])); forprime(p=5,(lim-5)\3, if(issemi(3*p+10), listput(v,3*p+5))); forprime(p=29,(lim+5)\3, if(issemi(3*p-10), listput(v,3*p-5))); forstep(n=30,lim\=1,6, if(issemi(n-5) && issemi(n+5), listput(v, n))); Set(v) \\ Charles R Greathouse IV, Apr 13 2020
    

A157486 Numbers n such that n-+1 are divisible by exactly 6 primes, counted with multiplicity.

Original entry on oeis.org

1889, 3079, 4591, 5023, 6175, 6641, 7649, 9881, 10961, 11501, 11935, 12689, 13751, 14417, 15499, 15713, 16687, 18017, 18089, 18271, 19169, 19249, 19889, 19951
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A167023 Fibonacci numbers where both neighbors are semiprimes.

Original entry on oeis.org

5, 34, 144, 46368
Offset: 1

Views

Author

Keywords

Comments

Next term (if it exists) is larger than 10^10000. I conjecture that this sequence is finite: if neighbors of Fibonacci numbers behave randomly, the expected number of remaining terms is about 0.0103 (or 0.00779 if their behavior mod 6 is taken into account). - Charles R Greathouse IV, Nov 09 2009

Examples

			5 is in the sequence because 4=2*2 and 6=2*3. 46368 is in the sequence because 46367 = 199 * 233 and 46369 = 89 * 521.
		

Crossrefs

Programs

  • Mathematica
    u[n_]:=Plus@@Last/@FactorInteger[n]==2; lst={};Do[f=Fibonacci[n];If[u[f-1]&&u[f+1], Print[f];AppendTo[lst,f]],{n,3*5!}];lst
    Select[Fibonacci[Range[200]],Union[PrimeOmega[#+{1,-1}]]=={2}&] (* Harvey P. Dale, Mar 16 2015 *)
  • PARI
    for(n=5,99, f=fibonacci(n); if(bigomega(f-1)==2 && bigomega(f+1)==2, print1(f", "))) \\ Charles R Greathouse IV, Mar 21 2016

Formula

A124936 INTERSECT A000045. - R. J. Mathar, Nov 03 2009

Extensions

Edited by R. J. Mathar, Nov 05 2009 and Charles R Greathouse IV, Nov 09 2009

A256389 Numbers n such that one or more primes can be the arithmetic mean of 2 semiprimes whose difference is 2*n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, 52, 54, 56, 57, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110
Offset: 1

Views

Author

Michel Marcus, Mar 27 2015

Keywords

Comments

That is, there are several primes p, such that p+n and p-n are both semiprime.
Complement of A256387.
The terms of this sequence that do not belong to A256388 are even.

Examples

			A256381 is the list of numbers n such that n-3 and n+3 are semiprimes, and it contains a single prime, hence 3 is in the sequence.
A256382 is the list of numbers n such that n-4 and n+4 are semiprimes, and it contains several primes, hence 4 is in the sequence.
		

Crossrefs

Cf. A256387 (no prime), A256388 (a single prime).
Showing 1-10 of 19 results. Next