A157483 Numbers k such that k-1 and k+1 are divisible by exactly 3 primes, counted with multiplicity.
19, 29, 43, 51, 67, 69, 77, 115, 171, 173, 187, 189, 237, 243, 245, 267, 274, 283, 285, 291, 317, 344, 355, 386, 403, 405, 411, 424, 427, 429, 435, 437, 476, 507, 597, 603, 604, 605, 638, 653, 664, 669, 723, 763, 776, 787, 789, 846, 891, 893, 907, 926, 963
Offset: 1
Keywords
Examples
19 is a term: 19-1 = 18 = 2*3*3 and 19+1 = 20 = 2*2*5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); a := proc (n) if bigomega(n-1) = 3 and bigomega(n+1) = 3 then n else end if end proc: seq(a(n), n = 2 .. 1100); # Emeric Deutsch, Mar 03 2009
-
Mathematica
q=3;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,7!}];lst Mean/@SequencePosition[PrimeOmega[Range[1000]],{3,,3}] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Mar 21 2020 *)
-
PARI
is(n)=bigomega(n-1)==3 && bigomega(n+1)==3 \\ Charles R Greathouse IV, Feb 05 2017
Extensions
More terms from Emeric Deutsch, Mar 03 2009
Comments