cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A124941 Numbers k such that k and k+4 are 4-almost primes.

Original entry on oeis.org

36, 56, 84, 100, 132, 136, 152, 228, 340, 344, 372, 376, 472, 484, 488, 532, 546, 564, 568, 580, 621, 632, 686, 708, 770, 804, 808, 820, 846, 852, 856, 868, 872, 950, 1012, 1192, 1204, 1206, 1208, 1274, 1304, 1326, 1336, 1444, 1524, 1550, 1572, 1576, 1690
Offset: 1

Views

Author

Zak Seidov, Nov 13 2006

Keywords

Examples

			36=2^2*3^2, 40=2^3*5; 56=2^3*7, 60=2^2*3*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1690], PrimeOmega[#]==PrimeOmega[#+4]==4 &] (* James C. McMahon, Dec 07 2024 *)
  • PARI
    isok(n) = (bigomega(n) == 4) && (bigomega(n+4) == 4); \\ Michel Marcus, Oct 11 2013

A157484 Numbers k such that k+-1 are divisible by exactly 4 primes, counted with multiplicity.

Original entry on oeis.org

55, 89, 151, 197, 233, 249, 295, 307, 329, 341, 343, 349, 461, 489, 491, 569, 571, 665, 713, 739, 775, 851, 857, 859, 869, 871, 949, 1013, 1015, 1061, 1097, 1111, 1149, 1191, 1205, 1207, 1209, 1211, 1219, 1255, 1275, 1277, 1291, 1303, 1315, 1421, 1431, 1449, 1483
Offset: 1

Views

Author

Keywords

Examples

			55 is a term: 55-1 = 54 = 2*3*3*3 and 55+1 = 56 = 2*2*2*7.
		

Crossrefs

Programs

A157485 Numbers k such that k-+1 are divisible by exactly 5 primes, counted with multiplicity.

Original entry on oeis.org

271, 593, 701, 751, 919, 1169, 1241, 1639, 1649, 1673, 1711, 1751, 2071, 2311, 2393, 2549, 2551, 2609, 2729, 2861, 2863, 2897, 2899, 3185, 3331, 3569, 3631, 3823, 3849, 3851, 3943, 3977, 4231, 4265, 4649, 4663, 5071, 5081, 5237, 5239, 5391, 5551, 5561, 5585, 5741
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    q=5;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,7!}];lst
    Select[Range[6000],PrimeOmega[#+{1,-1}]=={5,5}&] (* Harvey P. Dale, Jun 05 2021 *)
    Mean/@SequencePosition[PrimeOmega[Range[6000]],{5,,5}] (* _Harvey P. Dale, Oct 19 2023 *)
  • PARI
    is(k) = bigomega(k-1)==5 && bigomega(k+1)==5; \\ Jinyuan Wang, Mar 22 2020

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A173966 Sums of two consecutive semiprimes.

Original entry on oeis.org

19, 29, 43, 51, 67, 69, 77, 115, 171, 173, 187, 189, 237, 243, 245, 267, 283, 285, 291, 317, 355, 403, 405, 411, 427, 429, 435, 437, 507, 597, 603, 605, 653, 669, 723, 763, 787, 789, 891, 893, 907, 963, 1003, 1029, 1053, 1075, 1085, 1107, 1131, 1245, 1267
Offset: 1

Views

Author

Keywords

Comments

First 16 terms:19,29,43,51,67,69,77,115,171,173,187,189,237,243,245,267 are the same as in A157483.
These are sums of two consecutive integers which are both semiprimes, whereas A118717 are sums of two semiprimes which are adjacent (consecutive) in A001358. [From R. J. Mathar, Mar 18 2010]

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2};lst={};Do[If[f[n],If[f[n+1],AppendTo[lst,2*n+1]]],{n,7!}];lst
    Total/@Select[Partition[Select[Range[700],PrimeOmega[#]==2&],2,1],#[[2]]- #[[1]] == 1&] (* Harvey P. Dale, Jun 22 2020 *)

A157486 Numbers n such that n-+1 are divisible by exactly 6 primes, counted with multiplicity.

Original entry on oeis.org

1889, 3079, 4591, 5023, 6175, 6641, 7649, 9881, 10961, 11501, 11935, 12689, 13751, 14417, 15499, 15713, 16687, 18017, 18089, 18271, 19169, 19249, 19889, 19951
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A157487 Numbers k such that k-1 and k+1 are each the product of exactly 7 primes, counted with multiplicity.

Original entry on oeis.org

10529, 15391, 17983, 18751, 22049, 23489, 24751, 26081, 29249, 32561, 35153, 43471, 49951, 52975, 58049, 58481, 67229, 67231, 70687, 71873, 72415, 76049, 77921, 79001, 79649, 82783, 83249, 85751, 88289, 93799, 95551, 97471, 102545
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc (n) if bigomega(n-1) = 7 and bigomega(n+1) = 7 then n else end if end proc: seq(a(n), n = 2 .. 120000); # Emeric Deutsch, Mar 07 2009
  • Mathematica
    q=7;lst={};Do[If[Plus@@Last/@FactorInteger[n-1]==q&&Plus@@Last/@FactorInteger[n+1]==q,AppendTo[lst,n]],{n,9!}];lst
    Select[Range[110000],PrimeOmega[#+{1,-1}]=={7,7}&] (* Harvey P. Dale, Apr 04 2015 *)
    Mean/@SequencePosition[PrimeOmega[Range[105000]],{7,,7}] (* _Harvey P. Dale, Sep 10 2022 *)

Extensions

More terms from Emeric Deutsch, Mar 07 2009

A157489 Numbers n such that n-+5 are divisible by exactly 5 primes, counted with multiplicity.

Original entry on oeis.org

275, 373, 445, 755, 985, 1165, 1245, 1475, 1535, 1643, 1645, 1705, 1715, 1745, 2219, 2305, 2317, 2389, 2445, 2455, 2543, 2579, 2845, 2855, 2893, 3229, 3299, 3325, 3371, 3565, 3613, 3659, 3695, 3757, 3829, 3875, 4255, 4285, 4295, 4345, 4355, 4477, 4745, 5003, 5065
Offset: 1

Views

Author

Keywords

Comments

Let a, b and 10 be pairwise coprime, with A001222(a) = A001222(b) = 4. There exists c such that c == 5 (mod a) and c == -5 (mod b). Dickson's conjecture implies that (c+k*a*b-5)/a and (c+k*a*b+5)/b are prime for infinitely many k; for such k, c+k*a*b is in the sequence. - Robert Israel, Mar 22 2020

Crossrefs

Programs

  • Maple
    N:= 10^4: # for terms <= N
    T5:= select(t -> numtheory:-bigomega(t)=5, {$1..N+5}):
    S:= T5 intersect map(`+`,T5,10):
    sort(convert(map(`-`,S,5),list)); # Robert Israel, Mar 22 2020
  • Mathematica
    q=5;lst={};Do[If[Plus@@Last/@FactorInteger[n-q]==q&&Plus@@Last/@FactorInteger[n+q]==q,AppendTo[lst,n]],{n,8!}];lst
    SequencePosition[PrimeOmega[Range[5100]],{5,,,_,,,_,,,_,5}][[All,1]]+5 (* Harvey P. Dale, Sep 23 2021 *)
Showing 1-7 of 7 results.