cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101436 Number of exponents in prime factorization of n which are primes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Leroy Quet, Jan 18 2005

Keywords

Comments

First occurrence of k: 1,4,36,900,44100 (A061742). - Robert G. Wilson v, Jan 25 2005

Examples

			36 = 2^2 *3^2. Since 2 is a prime and occurs twice as an exponent in the prime factorization of 36, a(36) = 2.
		

Crossrefs

Programs

Formula

Additive with a(p^e) = A010051(e). - Antti Karttunen, Jul 19 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (P(p)-P(p+1)) = 0.39847584805803104040..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 29 2023

Extensions

More terms from Robert G. Wilson v, Jan 25 2005

A125030 a(n) = sum of exponents in the prime factorization of n that are noncomposite.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 0, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 1, 0, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Leroy Quet, Nov 16 2006

Keywords

Examples

			a(720) = 3, since the prime factorization of 720 is 2^4 * 3^2 * 5^1 and two of the exponents in this factorization are noncomposites (the exponents 2 and 1, whose sum is 3).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Select[Last /@ FactorInteger[n], # == 1 || PrimeQ[ # ] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
  • PARI
    A125030(n) = vecsum(apply(e -> if((1==e)||isprime(e),e,0), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017

Formula

From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = e if e is composite, and 0 otherwise.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = - P(2) + Sum_{p prime} p * (P(p) - P(p+1)) = 0.52262278983683613884..., where P(s) is the prime zeta function. (End)

Extensions

Extended by Ray Chandler, Nov 19 2006

A125072 a(n) = number of exponents in the prime-factorization of n which are triangular numbers.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Leroy Quet, Nov 18 2006

Keywords

Examples

			The prime-factorization of 360 is 2^3 *3^2 *5^1. There are two exponents in this factorization which are triangular numbers, 1 and 3. So a(360) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length @ Select[Last /@ FactorInteger[n], IntegerQ[Sqrt[8# + 1]] &];Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
  • PARI
    A010054(n) = issquare(8*n + 1); \\ This function from Michael Somos, Apr 27 2000.
    A125072(n) = vecsum(apply(e -> A010054(e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 08 2017

Formula

Additive with a(p^e) = A010054(e). - Antti Karttunen, Jul 08 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=2} (P(k*(k+1)/2) - P(k*(k+1)/2 + 1)) = -0.34517646457715166126..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 28 2023

Extensions

Extended by Ray Chandler, Nov 19 2006

A384421 The number of exponentially squarefree prime powers (not including 1) that unitarily divide n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 0, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 28 2025

Keywords

Comments

First differs from A125029 at n = 64.
A number k unitarily divides n if k|n and gcd(k, n/k) = 1.
The number of unitary divisors of n that are larger than 1 and are terms in A384419.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[SquareFreeQ[e], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(issquarefree, factor(n)[, 2]));

Formula

Additive with a(p^e) = A008966(e).
Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A008966(e)/p^e = 0.40780808646244052181... .
Showing 1-4 of 4 results.