A125084 Cubes which have a partition as the sum of 3 squares.
0, 1, 8, 27, 64, 125, 216, 512, 729, 1000, 1331, 1728, 2197, 2744, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 13824, 15625, 17576, 19683, 24389, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 64000, 68921, 74088, 79507, 85184, 91125
Offset: 1
Keywords
Examples
125 is in the sequence because 125 = 5^3 = 0^2 + 2^2 + 11^2 = 0^2 + 5^2 + 10^2 = 3^2 + 4^2 + 10^2 = 5^2 + 6^2 + 8^2. 27 = 3^3 = 1^2 + 1^2 + 5^2, so 27 is a term. 125 = 5^3 = 0^2 + 2^2 + 11^2, so 125 is a term. 216 = 6^3 = 2^2 + 4^2 + 14^2, so 216 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Select[Range[0, 50]^3, SquaresR[3, # ] > 0 &] (* Ray Chandler, Nov 23 2006 *)
-
PARI
isA125084(n)={ local(cnt,a,b) ; cnt=0 ; a=0; while(a^2<=n, b=0 ; while(b<=a && a^2+b^2<=n, if(issquare(n-a^2-b^2), return(1) ) ; b++ ; ) ; a++ ; ) ; return(0) ; } { for(n=1,300, if(isA125084(n^3), print1(n^3,", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 23 2006
Comments