cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004215 Numbers that are the sum of 4 but no fewer nonzero squares.

Original entry on oeis.org

7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79, 87, 92, 95, 103, 111, 112, 119, 124, 127, 135, 143, 151, 156, 159, 167, 175, 183, 188, 191, 199, 207, 215, 220, 223, 231, 239, 240, 247, 252, 255, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343
Offset: 1

Views

Author

Keywords

Comments

Lagrange's theorem tells us that each positive integer can be written as a sum of four squares.
If n is in the sequence and k is an odd positive integer then n^k is in the sequence because n^k is of the form 4^i(8j+7). - Farideh Firoozbakht, Nov 23 2006
Numbers whose cubes do not have a partition as a sum of 3 squares. a(n)^3 = A134738(n). - Artur Jasinski, Nov 07 2007
A002828(a(n)) = 4; A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
There are infinitely many adjacent pairs (for example, 128n + 111 and 128n + 112 for any n), but never a triple of consecutive integers. - Ivan Neretin, Aug 17 2017
These numbers are called "forbidden numbers" in crystallography: for a cubic crystal, no reflection with index hkl such that h^2 + k^2 + l^2 = a(n) appears in the crystal's diffraction pattern. - A. Timothy Royappa, Aug 11 2021

Examples

			15 is in the sequence because it is the sum of four squares, namely, 3^2 + 2^2 + 1^2 + 1^2, and it can't be expressed as the sum of fewer squares.
16 is not in the sequence, because, although it can be expressed as 2^2 + 2^2 + 2^2 + 2^2, it can also be expressed as 4^2.
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 261.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 12.
  • E. Poznanski, 1901. Pierwiastki pierwotne liczb pierwszych. Warszawa, pp. 1-63.
  • W. Sierpiński, 1925. Teorja Liczb. pp. 1-410 (p. 125).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry 4181.

Crossrefs

Complement of A000378.
Cf. A000118 (ways to write n as sum of 4 squares), A025427.

Programs

  • Haskell
    a004215 n = a004215_list !! (n-1)
    a004215_list = filter ((== 4) . a002828) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    {seq(seq(4^i * (8*j + 7), j = 0 .. floor((N/4^i - 7)/8)), i = 0 .. floor(log[4](N)))}; # Robert Israel, Sep 02 2014
  • Mathematica
    Sort[Flatten[Table[4^i(8j + 7), {i, 0, 2}, {j, 0, 42}]]] (* Alonso del Arte, Jul 05 2005 *)
    Select[Range[120], Mod[ #/4^IntegerExponent[ #, 4], 8] == 7 &] (* Ant King, Oct 14 2010 *)
  • PARI
    isA004215(n)={ local(fouri,j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1,400, if(isA004215(n), print1(n,",") ; ) ; ) ; } \\ R. J. Mathar, Nov 22 2006
    
  • PARI
    isA004215(n)= n\4^valuation(n,4)%8==7 \\ M. F. Hasler, Mar 18 2011
    
  • Python
    def valuation(n, b):
        v = 0
        while n > 1 and n%b == 0: n //= b; v += 1
        return v
    def ok(n): return n//4**valuation(n, 4)%8 == 7 # after M. F. Hasler
    print(list(filter(ok, range(344)))) # Michael S. Branicky, Jul 15 2021
    
  • Python
    from itertools import count, islice
    def A004215_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not (m:=(~n&n-1).bit_length())&1 and (n>>m)&7==7,count(max(startvalue,1)))
    A004215_list = list(islice(A004215_gen(),30)) # Chai Wah Wu, Jul 09 2022
    
  • Python
    def A004215(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>(i<<1))-7>>3)+1 for i in range(x.bit_length()>>1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = A055039(n)/2. - Ray Chandler, Jan 30 2009
Numbers of the form 4^i*(8*j+7), i >= 0, j >= 0. [A.-M. Legendre & C. F. Gauss]
Products of the form A000302(i)*A004771(j), i, j >= 0. - R. J. Mathar, Nov 29 2006
a(n) = 6*n + O(log(n)). - Charles R Greathouse IV, Dec 19 2013
Conjecture: The number of terms < 2^n is A023105(n) - 2. - Tilman Neumann, Sep 20 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)
Additional comments from Jud McCranie, Mar 19 2000

A000378 Sums of three squares: numbers of the form x^2 + y^2 + z^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition: numbers of the form x^2 + y^2 + z^2 with x,y,z >= 0.
Bourgain studies "the spatial distribution of the representation of a large integer as a sum of three squares, on the small and critical scale as well as their electrostatic energy. The main results announced give strong evidence to the thesis that the solutions behave randomly. This is in sharp contrast to what happens with sums of two or four or more square." Sums of two nonzero squares are A000404. - Jonathan Vos Post, Apr 03 2012
The multiplicities for a(n) (if 0 <= x <= y <= z) are given as A000164(a(n)), n >= 1. Compare with A005875(a(n)) for integer x, y and z, and order taken into account. - Wolfdieter Lang, Apr 08 2013
a(n)^k is a member of this sequence for any k > 1. - Boris Putievskiy, May 05 2013
The selection rule for the planes with Miller indices (hkl) to undergo X-ray diffraction in a simple cubic lattice is h^2+k^2+l^2 = N where N is a term of this sequence. See A004014 for f.c.c. lattice. - Mohammed Yaseen, Nov 06 2022

Examples

			a(1) = 0 = 0^2 + 0^2 + 0^2. A005875(0) = 1 = A000164(0).
a(9) = 9 = 0^2 + 0^2 + 3^2 =  1^2 +  2^2 + 2^2. A000164(9) = 2. A000164(9) = 30 = 2*3 + 8*3 (counting signs and order). - _Wolfdieter Lang_, Apr 08 2013
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 37.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section C20.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.

Crossrefs

Union of A000290, A000404 and A000408 (common elements).
Union of A000290, A000415 and A000419 (disjunct sets).
Complement of A004215.
Cf. A005875 (number of representations if x, y and z are integers).

Programs

  • Maple
    isA000378 := proc(n) # return true or false depending on n being in the list
        local x,y ;
        for x from 0 do
            if 3*x^2 > n then
                return false;
            end if;
            for y from x do
                if x^2+2*y^2 > n then
                    break;
                else
                    if issqr(n-x^2-y^2) then
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A000378 := proc(n) # generate A000378(n)
        option remember;
        local a;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA000378(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A000378(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    okQ[n_] := If[EvenQ[k = IntegerExponent[n, 2]], m = n/2^k; Mod[m, 8] != 7, True]; Select[Range[0, 100], okQ] (* Jean-François Alcover, Feb 08 2016, adapted from PARI *)
  • PARI
    isA000378(n)=my(k=valuation(n, 2)); if(k%2==0, n>>=k; n%8!=7, 1)
    
  • PARI
    list(lim)=my(v=List(),k,t); for(x=0,sqrtint(lim\=1), for(y=0, min(sqrtint(lim-x^2),x), k=x^2+y^2; for(z=0,min(sqrtint(lim-k), y), listput(v,k+z^2)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    def valuation(n, b):
        v = 0
        while n > 1 and n%b == 0: n //= b; v += 1
        return v
    def ok(n): return n//4**valuation(n, 4)%8 != 7
    print(list(filter(ok, range(84)))) # Michael S. Branicky, Jul 15 2021
    
  • Python
    from itertools import count, islice
    def A000378_gen(): # generator of terms
        return filter(lambda n:n>>2*(bin(n)[:1:-1].index('1')//2) & 7 < 7, count(1))
    A000378_list = list(islice(A000378_gen(),30)) # Chai Wah Wu, Jun 27 2022
    
  • Python
    def A000378(n):
        def f(x): return n-1+sum(((x>>(i<<1))-7>>3)+1 for i in range(x.bit_length()>>1))
        m, k = n-1, f(n-1)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

Legendre: a nonnegative integer is a sum of three squares iff it is not of the form 4^k m with m == 7 (mod 8).
n^(2k+1) is in the sequence iff n is in the sequence. - Ray Chandler, Feb 03 2009
Complement of A004215; complement of A000302(i)*A004771(j), i,j>=0. - Boris Putievskiy, May 05 2013
a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014

Extensions

More terms from Ray Chandler, Sep 05 2004

A125110 Cubes which have a partition as the sum of 2 squares.

Original entry on oeis.org

0, 1, 8, 64, 125, 512, 729, 1000, 2197, 4096, 4913, 5832, 8000, 15625, 17576, 24389, 32768, 39304, 46656, 50653, 64000, 68921, 91125, 117649, 125000, 140608, 148877, 195112, 226981, 262144, 274625, 314432, 373248, 389017, 405224, 512000, 531441
Offset: 1

Views

Author

Artur Jasinski, Nov 21 2006

Keywords

Examples

			125 = 5^3 = 2^2 + 11^2 = A001481(54) = A000578(8).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 81]^3, SquaresR[2, # ] > 0 &] (* Ray Chandler, Nov 23 2006 *)
  • PARI
    isA125110(ncube)={ local(a) ; a=0; while(a^2<=ncube, if(issquare(ncube-a^2), return(1) ; ) ; a++ ; ) ; return(0) ; } { for(n=0,200, if(isA125110(n^3), print1(n^3,",") ; ) ; ) ; } \\ R. J. Mathar, Nov 23 2006
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A125110_gen(): # generator of terms
        return map(lambda m:m**3,filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0)))
    A125110_list = list(islice(A125110_gen(),20)) # Chai Wah Wu, Jun 27 2022

Formula

a(n) = A001481(n)^3. - Ray Chandler, Nov 23 2006
Equals A000578 INTERSECT A001481. - R. J. Mathar, Nov 23 2006

Extensions

Corrected and extended by R. J. Mathar and Ray Chandler, Nov 23 2006

A125111 Cubes which do not have a partition as the sum of 2 squares.

Original entry on oeis.org

27, 216, 343, 1331, 1728, 2744, 3375, 6859, 9261, 10648, 12167, 13824, 19683, 21952, 27000, 29791, 35937, 42875, 54872, 59319, 74088, 79507, 85184, 97336, 103823, 110592, 132651, 157464, 166375, 175616, 185193, 205379, 216000, 238328, 250047
Offset: 1

Views

Author

Artur Jasinski, Nov 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 65]^3, SquaresR[2, # ] == 0 &] (* Ray Chandler, Nov 23 2006 *)
  • PARI
    isA125111(ncube)={ local(a) ; a=0; while(a^2<=ncube, if(issquare(ncube-a^2), return(0) ; ) ; a++ ; ) ; return(1) ; } { for(n=0,200, if(isA125111(n^3), print1(n^3,",") ; ) ; ) ; } \\ R. J. Mathar, Nov 23 2006

Formula

Equals A000578 INTERSECT A022544. - R. J. Mathar, Nov 23 2006
a(n) = A022544(n)^3. - Ray Chandler, Nov 23 2006

Extensions

More terms from R. J. Mathar and Ray Chandler, Nov 23 2006
Showing 1-4 of 4 results.