cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125122 First differences of A034888.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This sequence is not periodic because log(3)/log(10) is an irrational number. - T. D. Noe, Jan 10 2007

Examples

			a(1)=0 because 3^(1+1)=9 (one digit) 3^1=3 (one digit) and the difference is 0
a(4)=1 because 3^(4+1)=243 (three digits) 3^(4)=81 (two digits) and the difference is 1
		

Programs

  • Maple
    P:=proc(n) local i,j,k,w,old; k:=3; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000);
  • Mathematica
    Differences[IntegerLength[3^Range[0,110]]] (* Harvey P. Dale, Jan 28 2015 *)

Formula

a(n)=Number_of_digits{3^(n+1)}-Number_of digits{3^(n)} with n>=0.