A125144 Increments in the number of decimal digits of 4^n.
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0
Offset: 1
Examples
a(1)=1 because 4^(1+1)=16 (two digits) 4^1=4 (one digit) and the difference is 1. a(2)=0 because 4^(2+1)=64 (two digits) 4^(2)=16 (two digits) and the difference is 0.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(n) local i,j,k,w,old; k:=4; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000); # alternative: H:= [seq(ilog10(4^i),i=1..1001)]: H[2..-1]-H[1..-2]; # Robert Israel, Jul 12 2018
-
Mathematica
Differences[IntegerLength[4^Range[100]]] (* Paolo Xausa, Jun 08 2024 *)
-
PARI
a(n) = #digits(4^(n+1)) - #digits(4^n); \\ Michel Marcus, Jul 12 2018
Formula
a(n)=Number_of_digits{4^(n+1)}-Number_of digits{4^(n)} with n>=0 and where "Number_of digits" is a hypothetical function giving the number of digits of the argument.
Extensions
Offset corrected by Robert Israel, Jul 11 2018
Comments