A125190 Number of ascents in all Schroeder paths of length 2n.
0, 1, 6, 32, 170, 912, 4942, 27008, 148626, 822560, 4573910, 25534368, 143027898, 803467056, 4524812190, 25537728000, 144411206178, 818017823808, 4640757865126, 26364054632480, 149959897539018, 853941394691792, 4867745532495086, 27773897706129792
Offset: 0
Keywords
Examples
a(2) = 6 because the Schroeder paths of length 4 are HH, H(U)D, (U)DH, (U)D(U)D, (U)HD and (UU)DD, having a total of 6 ascents (shown between parentheses).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Programs
-
Maple
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*R*(1+z*R)/sqrt(1-6*z+z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25); # second Maple program: a:= proc(n) option remember; `if`(n<3, [0,1,6][n+1], ((204*n^2-411*n+198)*a(n-1) +(-34*n^2+68*n+96)*a(n-2) +(3*n-12)*a(n-3))/(2*n*(17*n-26))) end: seq(a(n), n=0..30); # Alois P. Heinz, Oct 20 2012
-
Mathematica
CoefficientList[Series[x*(1-x-Sqrt[1-6*x+x^2])/(2*x)*(1+x*(1-x-Sqrt[1-6*x+x^2])/(2*x))/Sqrt[1-6*x+x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *) a[n_] := Sum[ Binomial[n+1, n-i-1]*Binomial[n+i, n], {i, 0, n-1}]; (* or *) a[n_] := Hypergeometric2F1[1-n, 1+n, 3, -1]*n*(n+1)/2; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 05 2013, after Vladimir Kruchinin *)
-
Sage
A125190 = lambda n : (n^2+n)*hypergeometric([1-n, n+1], [3], -1)/2 [round(A125190(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 17 2014
Formula
a(n) = Sum_{k=0..n} k * A090981(n, k).
G.f.: z*R*(1 + z*R)/sqrt(1 - 6*z + z^2), where R = 1 + z*R + z*R^2, i.e., R = (1 - z -sqrt(1 - 6*z + z^2))/(2*z).
D-finite Recurrence: 2*n*(17*n - 26)*a(n) = 3*(68*n^2 - 137*n + 66)*a(n-1) - 2*(17*n^2 - 34*n - 48)*a(n-2) + 3*(n - 4)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(-3/4)*(3 + 2*sqrt(2))^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 19 2012
a(n) = Sum_{i=0..n-1} binomial(n+1, n-i-1) * binomial(n+i, n). - Vladimir Kruchinin, Feb 05 2013
a(n) = (n*(n+1)/2)*hypergeometric([1-n, n+1], [3], -1). - Peter Luschny, Sep 17 2014
a(n) = ((n+1)/2) * A006319(n-1). - Vladimir Kruchinin, Apr 27 2024
Comments