cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A126657 Prime numbers that are the sum of three distinct positive fourth powers.

Original entry on oeis.org

353, 1553, 5393, 6833, 7187, 7793, 7873, 8963, 9043, 9587, 10337, 11953, 13697, 14177, 14723, 16193, 17123, 20753, 21283, 21377, 21617, 23603, 25457, 28643, 29873, 30113, 30817, 31393, 35393, 35747, 39857, 43283, 45233, 45377, 46273
Offset: 1

Views

Author

Tomas Xordan, Feb 09 2007

Keywords

Examples

			1553= 1^4 + 4^4 + 6^4 = 1 + 256 + 1296.
6833 = 2^4 + 4^4 + 9^4 = 16 + 256 + 6561.
21377 = 2^4 + 5^4 + 12^4 = 16 + 625 + 20736.
35747 = 5^4 + 9^4 + 13^4 = 625 + 6561 + 28561.
		

Crossrefs

Programs

  • Mathematica
    Union[Select[Total/@Subsets[Range[20]^4,{3}],PrimeQ]] (* Harvey P. Dale, May 08 2012 *)
  • PARI
    {m=15;p=m^4;v=vector(m,x,x^4);w=[];for(i=1,m-2,for(j=i+1,m-1, for(k=j+1,m,if((n=v[i]+v[j]+v[k])
    				

Extensions

Edited, corrected and extended by Klaus Brockhaus, Feb 11 2007

A126658 Prime numbers that are the sum of three distinct positive eighth powers.

Original entry on oeis.org

72353, 1745153, 7444673, 44726593, 49202147, 61503553, 100006817, 100072097, 101686177, 107444417, 143046977, 214756067, 257412163, 430372577, 431661313, 435812033, 447149537, 452523713, 489805633, 530372321, 744340577, 834187553
Offset: 1

Views

Author

Tomas Xordan, Feb 09 2007

Keywords

Comments

These are also the sum of three squares and the sum of three fourth powers: 7444673 = 16^2 + 1296^2 + 2401^2 = 4^4 + 36^4 + 49^4 = 256 + 1679616 + 5764801.

Examples

			72353 = 2^8 + 3^8 + 4^8 = 256 + 6561 + 65536.
7444673 = 2^8 + 6^8 + 7^8 = 256 + 1679616 + 5764801.
49202147 = 5^8 + 7^8 + 9^8 = 390625 + 5764801 + 43046721.
		

Crossrefs

Programs

  • PARI
    {m=14;p=m^8;v=vector(m,x,x^8);w=[];for(i=1,m-2,for(j=i+1,m-1, for(k=j+1,m,if((n=v[i]+v[j]+v[k])
    				

Extensions

Edited, corrected and extended by Klaus Brockhaus, Feb 11 2007

A126708 Prime numbers that are the sum of the cubes of three distinct primes with the same final digit.

Original entry on oeis.org

93871, 100043, 159389, 161071, 236627, 240551, 297233, 325693, 409499, 456623, 468551, 524287, 550061, 583981, 614683, 617401, 653491, 705277, 722807, 800171, 968239, 1016839, 1040311, 1129013, 1172261, 1276039, 1317259, 1326277, 1379519
Offset: 1

Views

Author

Tomas Xordan, Feb 11 2007

Keywords

Examples

			93871 = 13^3 + 23^3 + 43^3 = 2197 + 12167 + 79507 is prime and 13, 23, 43 are primes with the same final digit, hence 93871 is a term.
617401 = 43^3 + 53^3 + 73^3 = 79507 + 148877 + 389017 is prime and 43, 53, 73 are primes with the same final digit, hence 617401 is a term.
14391 = 3^3 + 13^3 + 23^3 = 27 + 2197 + 12167 is not prime; although 3, 13, 23 are primes with the same final digit, 14391 is not in the sequence.
		

Crossrefs

Programs

  • PARI
    {m=116; p=m^3; w=[]; forprime(i=1, m-2, r=i%10; forprime(j=i+1, m-1, forprime(k=j+1, m, if(j%10==r&&k%10==r&&(n=i^3+j^3+k^3)
    				

Extensions

Edited, corrected and extended by Klaus Brockhaus, Feb 16 2007

A126704 Prime numbers that are the sum of three distinct positive sixth powers.

Original entry on oeis.org

4889, 50753, 51481, 66377, 262937, 308801, 797681, 840241, 1000793, 1046657, 1772291, 2303003, 2986777, 3032641, 3107729, 3365777, 4757609, 4804201, 5135609, 7530329, 7534361, 8061041, 8065073, 10516249, 12394721, 14638753
Offset: 1

Views

Author

Tomas Xordan, Feb 11 2007

Keywords

Examples

			4889 = 2^6 + 3^6 + 4^6 = 64 + 729 + 4096.
66377 = 4^6 + 5^6 + 6^6 = 4096 + 15625 + 46656.
		

Crossrefs

Programs

  • Maple
    N:= 10^10; # to find all terms <= N
    A := {}:
    for a from 1 to iroot(N,6) do
      for b from 1 to a-1 while a^6 + b^6 < N do
        for c from (a+b) mod 2 + 1 to b-1 by 2 do
          r:= a^6 + b^6 + c^6;
          if r > N then break fi;
          if isprime(r) then A:= A union {r} fi;
    od od od:
    sort(convert(A,list)); # Robert Israel, Dec 15 2015
  • Mathematica
    Union[Select[Total/@Subsets[Range[20]^6,{3}],PrimeQ]] (* Harvey P. Dale, Apr 20 2013 *)
  • PARI
    {m=16; p=m^6; w=[]; for(i=1,m-2,for(j=i+1, m-1, for(k=j+1, m, if((n=i^6+j^6+k^6)Klaus Brockhaus, Feb 16 2007 */

Extensions

Edited, corrected and extended by Klaus Brockhaus, Feb 16 2007

A242675 Smallest prime with exactly n representations as sum of 3 distinct positive squares.

Original entry on oeis.org

2, 29, 89, 101, 281, 269, 641, 461, 701, 761, 1049, 941, 1109, 1601, 1361, 2621, 2309, 1889, 2441, 2141, 2609, 3929, 3701, 3461, 3449, 5849, 4241, 4289, 5081, 8669, 7589, 5381, 6569, 9941, 8861, 7229, 7829, 8501, 8069, 8609, 9749, 10601
Offset: 0

Views

Author

Zak Seidov, May 20 2014

Keywords

Comments

2 cannot be represented as the sum of 3 distinct positive squares hence a(0)=2 (and offset is 0).

Examples

			29 = 2^2 + 3^2 + 4^2 and this is the only such representation.
89 = 2^2 + 6^2 + 7^2 = 3^2 + 4^2 + 8^2 and these are the only such representations.
101 = 1^2 + 6^2 + 8^2 = 2^2 + 4^2 + 9^2 = 4^2 + 6^2 + 7^2 and these are the only such representations.
		

Crossrefs

A263723 Number of representations of the prime P = A182479(n) as P = p^2 + q^2 + r^2, where p < q < r are also primes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

According to Sierpinski and Schinzel (1988), it is easy to prove that the smallest of p, q, r is always p = 3, and under Schinzel's hypothesis H the sequence is infinite.

Examples

			A182479(1) = 83 = 3^2 + 5^2 + 7^2 and A182479(2) = 179 = 3^2 + 7^2 + 11^2 are the only ways to write 83 and 179 as sums of squares of 3 distinct primes, so a(1) = 1 and a(2) = 1.
A182479(5) = 419 = 3^2 + 7^2 + 19^2 = 3^2 + 11^2 + 17^2 are the only such representations of 419, so a(5) = 2.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see pp. 220-221.

Crossrefs

Programs

  • Mathematica
    lst = {}; r = 7; While[r < 132, q = 5; While[q < r, P = 9 + q^2 + r^2; If[PrimeQ@P, AppendTo[lst, P]];
      q = NextPrime@q]; r = NextPrime@r]; Take[Transpose[Tally@Sort@lst][[2]], 105]
Showing 1-6 of 6 results.