cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125636 Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

5, 17, 7, 19, 3, 19, 131, 127, 263, 41, 229, 691, 313, 19, 53, 521, 53, 601, 1301, 11, 619, 31, 269, 3187, 53, 181, 43, 317, 499, 373, 911, 659, 19, 3659, 313, 751, 233, 4373, 3307, 419, 2591, 313, 1249, 2897, 349, 709, 331, 1973, 1933, 503, 821, 977, 2371, 263
Offset: 1

Views

Author

Alexander Adamchuk, Nov 28 2006

Keywords

Crossrefs

Cf. A125637 (analogous with p^3 instead of p^2).
Cf. A125609 (q=3), A125610 (q=5), A125611 (q=7), A125612 (q=11), A125632 (q=13), A125633 (q=17), A125634 (q=19): sequences of smallest prime p such that q^n divides p^(q-1) - 1.

Programs

  • Maple
    a:= proc(p)
      local q;
      q:= 3;
      while (q &^ (p-1) - 1) mod p^2 <> 0 do
        q:= nextprime(q)
      od:
      q
    end proc:
    seq(a(ithprime(n)), n=1..100); # Robert Israel, Nov 24 2014
  • Mathematica
    Table[Function[p, q = 3; While[! Divisible[q^(p - 1) - 1, p^2], q = NextPrime@ q]; q]@ Prime@ n, {n, 54}] (* Michael De Vlieger, Feb 12 2017 *)
  • PARI
    a(n) = {p = prime(n); forprime(q=3, , if (Mod(q, p^2)^(p-1) == 1, return (q)););} \\ Michel Marcus, Nov 24 2014

Extensions

Removed an incorrect comment. - Felix Fröhlich, Feb 12 2017