cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125650 Numerator of n(n+3)/(4(n+1)(n+2)) = sum(k=1..n, 1/(k(k+1)(k+2)) ).

Original entry on oeis.org

0, 1, 5, 9, 7, 5, 27, 35, 11, 27, 65, 77, 45, 26, 119, 135, 38, 85, 189, 209, 115, 63, 275, 299, 81, 175, 377, 405, 217, 116, 495, 527, 140, 297, 629, 665, 351, 185, 779, 819, 215, 451, 945, 989, 517, 270, 1127, 1175, 306, 637, 1325, 1377, 715, 371, 1539, 1595, 413, 855
Offset: 0

Views

Author

Alexander Adamchuk, Nov 29 2006

Keywords

Comments

3^2 divides a(3k). p divides a(p) for an odd prime p. p divides a(p-3) for prime p>3. p^k divides a(p^k) for an odd prime p. a(n) = m^2 is a perfect square for n = {1,3,24,147,864,5043,29400,171363,...} = A125651(n). Corresponding numbers m such that m^2 = a[ A125651(n) ] are listed in A125652(n) = {1,3,9,105,306,3567,10395,121173,...}.

Examples

			The rationals n(n+3)/(4(n+1)(n+2)) = a(n)/A230328(n) begin:
0, 1/6, 5/24, 9/40, 7/30, 5/21, 27/112, 35/144, 11/45, 27/110, 65/264, 77/312, 45/182, 26/105, 119/480, ... - _Wolfdieter Lang_, Mar 08 2018
		

References

  • L. B.W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p.38, (201).

Crossrefs

Cf. A125651, A125652. A160050, A230328 (denominators).

Programs

  • Magma
    [Numerator(n*(n+3)/(4*(n+1)*(n+2))): n in [0..60]]; // Vincenzo Librandi, May 21 2012
  • Mathematica
    Table[Numerator[n(n+3)/(4(n+1)(n+2))],{n,0,100}]
  • PARI
    a(n)=n*(n+3)/2^min(3,valuation(n*(n+3),2)); \\ Max Alekseyev, Jan 11 2007
    

Formula

a(n) = Sum_{k=1..n} 1/(k(k+1)(k+2)).
a(n) = n*(n+3)/2^min(3,valuation(n*(n+3),2)). a(n)=n*(n+3)/4 for n=1 or 4 (mod 8); a(n)=n*(n+3)/8 for n=0 or 5 (mod 8); a(n) = n*(n+3)/2 for n=2, 3, 6, or 7 (mod 8). - Max Alekseyev, Jan 11 2007
a(n) = A106609(n)*A106609(n+3). - Paul Curtz, Jan 13 2011
G.f.: x*(x^19 -2*x^18 +3*x^17 -5*x^16 +3*x^15 -6*x^14 +7*x^13 -11*x^12 -12*x^11 +24*x^10 -36*x^9 +24*x^8 -38*x^7 +28*x^6 -18*x^5 -3*x^4 -2*x -1) / ((x-1)^3*(x^2+1)^3*(x^4+1)^3). - Colin Barker, Feb 21 2013
G.f. for rationals r(n) = a(n)/A230328(n): (1/4)*(1 - hypergeometric([1, 2], [3], -x/(1-x)))/(1-x) = (- 2*x + 3*x^2 + 2*(2*x - (1 + x^2))*log(1-x))/(4*(1-x)*x^2). For the r(n) formula see Jolley's general remark (201) on p.38. Thanks to Gary Detlefs for pointing to this remark. - Wolfdieter Lang, Mar 08 2018