cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125695 Expansion of (sqrt(1+2x+9x^2)+x-1)/(2x).

Original entry on oeis.org

1, 2, -2, -2, 10, -6, -42, 102, 82, -782, 814, 3854, -12454, -5014, 98694, -142218, -472158, 1932258, 19038, -14816994, 27370410, 64159962, -334154442, 121279878, 2418497010, -5523511086, -8914677362, 61259567662, -44249714438
Offset: 0

Views

Author

Paul Barry, Nov 30 2006, Dec 10 2008

Keywords

Comments

First column of A125694.
Hankel transform is (-2)^C(n+1, 2)*A001045(n+2).

Crossrefs

Cf. A091593.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+2x+9x^2]+x-1)/(2x),{x,0,30}],x] (* Harvey P. Dale, Jul 25 2013 *)

Formula

a(n)=0^n+2*sum{k=0..floor((n-1)/2), C(n-1,2k)*C(k)*(-1)^(n-k-1)*2^k}, C(n)=A000108(n).
D-finite with recurrence: (n+1)*a(n) +(2*n-1)*a(n-1) +9*(n-2)*a(n-2)=0. - R. J. Mathar, Dec 02 2014

A125693 Riordan array ((1-x)/(1-3*x), x*(1-x)/(1-3*x)).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 18, 16, 6, 1, 54, 60, 30, 8, 1, 162, 216, 134, 48, 10, 1, 486, 756, 558, 248, 70, 12, 1, 1458, 2592, 2214, 1168, 410, 96, 14, 1, 4374, 8748, 8478, 5160, 2150, 628, 126, 16, 1, 13122, 29160, 31590, 21744, 10442, 3624, 910, 160, 18, 1
Offset: 0

Views

Author

Paul Barry, Nov 30 2006

Keywords

Comments

Row sums are A001835(n+1). Diagonal sums are A030186. Inverse is A125694. Equal to product of A007318 and A073370.

Examples

			Triangle begins
    1;
    2,   1;
    6,   4,   1;
   18,  16,   6,  1;
   54,  60,  30,  8,  1;
  162, 216, 134, 48, 10, 1;
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j->
    (-1)^j*3^(n-k-j)*Binomial(k+1,j)*Binomial(n-j, n-k-j) )))); # G. C. Greubel, Oct 28 2019
  • Magma
    T:= func< n,k | &+[(-1)^j*3^(n-k-j)*Binomial(k+1,j)*Binomial(n-j, n-k-j): j in [0..n]] >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(seq( add( (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j), j=0..n), k=0..n), n=0..10); # G. C. Greubel, Oct 28 2019
  • Mathematica
    T[0, 0]=1; T[1, 0]=2; T[1, 1]=1; T[n_, k_]/; 0<=k<=n:= T[n, k]= 3T[n-1, k] + T[n-1, k-1] - T[n-2, k-1]; T[, ]=0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
    T[n_, k_]:= Sum[(-1)^j*3^(n-k-j)*Binomial[k+1,j]*Binomial[n-j,n-k-j], {j, 0, n}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    T(n,k) = sum(j=0,n, (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [[sum( (-1)^j*3^(n-k-j)*binomial(k+1,j)*binomial(n-j, n-k-j) for j in (0..n) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 28 2019
    

Formula

Number triangle T(n,k) = Sum_{j=0..k+1} C(k+1,j)*C(n-j,n-k-j)* (-1)^j * 3^(n-k-j).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k>n or if kPhilippe Deléham, Jan 08 2013

A183875 Triangle T(n,k) for A(x)^k=sum(n>=k T(n,k)*x^n), where o.g.f. A(x) satisfies A(x)=(a+b*x*A(x))/(c-d*x*A(x)), a=1,b=2,c=1,d=2.

Original entry on oeis.org

1, 4, 1, 24, 8, 1, 176, 64, 12, 1, 1440, 544, 120, 16, 1, 12608, 4864, 1168, 192, 20, 1, 115584, 45184, 11424, 2112, 280, 24, 1, 1095424, 432128, 113088, 22528, 3440, 384, 28, 1, 10646016, 4227584, 1133952, 237824, 39840, 5216, 504, 32, 1, 105522176, 42115072, 11506944, 2505728, 448064, 65280, 7504, 640, 36, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Feb 12 2011

Keywords

Comments

For o.g.f G(x), G(A(x,a,b,c,d))=g(0)+sum(n>0, sum(k=1..n, T(n,k,a,b,c,d)*g(k))x^n).
T(n,k,1,1,1,1)=A080247(n,k),
T(n,k,2,-1,1,1)=A108891(n,k),
T(n,k,1,-2,1,1)=A125692(n,k),
T(n,k,1,-3,1,1)=A125694(n,k),
T(n,k,-2,1,1,1)=A085403(n,k).

Examples

			1,
4,1,
24,8,1,
176,64,12,1,
1440,544,120,16,1,
12608,4864,1168,192,20,1,
115584,45184,11424,2112,280,24,1,
1095424,432128,113088,22528,3440,384,28,1,
10646016,4227584,1133952,237824,39840,5216,504,32,1,
105522176,42115072,11506944,2505728,448064,65280,7504,640,36,1
		

Programs

  • Mathematica
    T[n_, k_, a_, b_, c_, d_] := k/n Sum[Binomial[n, n - k - i] a^(k + i) b^(n - k - i) Binomial[i + n - 1, n - 1] c^(-i - n) d^i, {i, 0, n - k}];
    T[n_, k_] := T[n, k, 1, 2, 1, 2];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 08 2018, from formula *)

Formula

T(n,k,a,b,c,d):=k/n*sum(i=0..n-k, binomial(n,n-k-i)*a^(k+i)*b^(n-k-i)*binomial(i+n-1,n-1)*c^(-i-n)*d^i), a,b,c,d !=0, n>0.
T(n,k,1,2,1,2):=k/n*2^(n-k)*sum(i=0..n-k, binomial(n,n-k-i)*binomial(i+n-1,n-1)), n>0.
Conjecture: T(n,1) = A156017(n-1). - R. J. Mathar, Nov 14 2011
Showing 1-3 of 3 results.