cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A125890 Floor(Zeta(3)^n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 13, 15, 19, 22, 27, 33, 39, 47, 57, 68, 82, 99, 119, 143, 172, 207, 249, 300, 361, 434, 521, 627, 753, 906, 1089, 1309, 1573, 1892, 2274, 2733, 3286, 3950, 4748, 5707, 6861, 8247, 9914, 11917, 14325, 17219, 20699, 24881, 29908
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[(Zeta[3])^n], {n, 1, 100}]

A125895 a(n) = floor(((1+sqrt(3))/2)^n).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 30, 42, 57, 78, 107, 147, 200, 274, 374, 511, 699, 955, 1304, 1782, 2434, 3326, 4543, 6206, 8478, 11581, 15820, 21611, 29521, 40327, 55088, 75251, 102795, 140421, 191819, 262030, 357939, 488954, 667924, 912401, 1246364
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[((1 + Sqrt[3])/2)^n], {n, 1, 100}]

A125891 Floor(Zeta(5)^n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 20, 21, 21, 22, 23, 24, 25
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[(Zeta[5])^n], {n, 1, 100}]

A125892 a(n) = floor((Pi^2/6)^n).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 19, 32, 53, 88, 145, 238, 392, 645, 1061, 1746, 2873, 4726, 7774, 12788, 21036, 34603, 56920, 93630, 154015, 253345, 416735, 685503, 1127607, 1854839, 3051088, 5018839, 8255660, 13580017, 22338233, 36744921, 60442973, 99424705, 163547085
Offset: 0

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[(Pi^2/6)^n], {n, 1, 100}]

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 22 2022

A125894 a(n) = floor(((1+sqrt(2))/2)^n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 29, 35, 43, 52, 62, 75, 91, 110, 133, 161, 194, 234, 283, 342, 412, 498, 601, 726, 876, 1058, 1277, 1541, 1861, 2246, 2712, 3273, 3951, 4770, 5758, 6951, 8390, 10128, 12226, 14758, 17814, 21504, 25957
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Cf. A174968 ((1+sqrt(2))/2).

Programs

  • Magma
    [Floor(((1+Sqrt(2))/2)^n): n in [1..100]]; // G. C. Greubel, Oct 02 2018
  • Mathematica
    Table[Floor[((1 + Sqrt[2])/2)^n], {n, 1, 100}]
  • PARI
    vector(100, n, floor(((1+sqrt(2))/2)^n)) \\ G. C. Greubel, Oct 02 2018
    

A125896 Floor(((1+sqrt(7))/2)^n).

Original entry on oeis.org

1, 1, 3, 6, 11, 20, 36, 66, 121, 222, 405, 738, 1346, 2453, 4472, 8153, 14863, 27093, 49388, 90029, 164112, 299156, 545324, 994058, 1812045, 3303133, 6021201, 10975901, 20007704, 36471557, 66483113, 121190448, 220915119, 402700792
Offset: 0

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[((1 + Sqrt[7])/2)^n], {n, 0, 100}]

Extensions

Added a(0)=1 - Jon Perry, Mar 15 2014

A125898 Floor((quadronacci ratio)^n).

Original entry on oeis.org

1, 3, 7, 13, 26, 51, 98, 190, 367, 708, 1364, 2630, 5071, 9775, 18841, 36318, 70007, 134942, 260110, 501380, 966441, 1862874, 3590806, 6921503, 13341626, 25716810, 49570746, 95550687, 184179871, 355018115, 684319420, 1319068095, 2542585503
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Examples

			Quadronacci ratio is root 1.92756... (A086088) of polynomial x^4-x^3-x^2-x-1.
		

Crossrefs

Programs

  • Mathematica
    With[{c=x/.FindRoot[x^4-x^3-x^2-x-1==0,{x,1.9}, WorkingPrecision->100]}, Floor[c^Range[40]]] (* Harvey P. Dale, Mar 05 2012 *)
Showing 1-7 of 7 results.