cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126068 Expansion of 1 - x - sqrt(1 - 2*x - 3*x^2) in powers of x.

Original entry on oeis.org

0, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0

Views

Author

Zerinvary Lajos, Feb 28 2007

Keywords

Comments

Except for initial terms, identical to A007971.

Examples

			G.f. = 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
		

Crossrefs

Cf. A007971.

Programs

  • Maple
    zl:=4*(1-z+sqrt(1-2*z-3*z^2))/(1-z+sqrt(1-2*z-3*z^2))^2: gser:=series(zl, z=0, 35): seq(coeff(gser, z, n), n=-2..27);
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}]; (* Michael Somos, Jan 25 2014 *)
    CoefficientList[Series[1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, 40}], x] (* Vincenzo Librandi, Apr 20 2014 *)
  • PARI
    {a(n) = polcoeff( (1 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n))), n)}; /* Michael Somos, Jan 25 2014 */

Formula

G.f.: 1 - x - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jan 25 2014
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
a(n) ~ 3^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 20 2014

Extensions

Better name by Michael Somos, Jan 25 2014