A126068 Expansion of 1 - x - sqrt(1 - 2*x - 3*x^2) in powers of x.
0, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0
Keywords
Examples
G.f. = 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A007971.
Programs
-
Maple
zl:=4*(1-z+sqrt(1-2*z-3*z^2))/(1-z+sqrt(1-2*z-3*z^2))^2: gser:=series(zl, z=0, 35): seq(coeff(gser, z, n), n=-2..27);
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}]; (* Michael Somos, Jan 25 2014 *) CoefficientList[Series[1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, 40}], x] (* Vincenzo Librandi, Apr 20 2014 *)
-
PARI
{a(n) = polcoeff( (1 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n))), n)}; /* Michael Somos, Jan 25 2014 */
Formula
G.f.: 1 - x - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jan 25 2014
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
a(n) ~ 3^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 20 2014
Extensions
Better name by Michael Somos, Jan 25 2014
Comments