cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070031 Expansion of (1+x*C)*C^3, where C = (1-sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 4, 13, 42, 138, 462, 1573, 5434, 19006, 67184, 239666, 861764, 3120180, 11366370, 41630805, 153216570, 566343030, 2101610280, 7826451270, 29240172780, 109566326220, 411671536380, 1550629453698, 5854180360932, 22148866939948, 83965042615552, 318895250752708
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

Counts the large components twice and the small components once in all Dyck (n+1)-paths, i.e., twice the number of returns less the number of hills = 2*A000245(n+1) - A000108(n+1). - David Scambler, Oct 08 2012
For n>=2, the number of coalescent histories for matching gene tree and species trees with a pseudocaterpillar shape that has n+3 leaves (Rosenberg 2007, Corollary 3.9). - Noah A Rosenberg, Feb 14 2019

Crossrefs

Partial sums of A071736.

Programs

  • Magma
    [2*(5*n+3)* Binomial(2*n+1, n)/((n+2)*(n+3)): n in [0..30]]; // G. C. Greubel, Feb 14 2019
    
  • Maple
    gf := ((3*x - 2)*sqrt(1 - 4*x) + 2*x^2 - 7*x + 2)/(2*x^3): ser := series(gf, x, 32): seq(coeff(ser, x, n), n = 0..9); # Peter Luschny, Jun 17 2022
  • Mathematica
    Table[2^(n + 1)*(5*n + 3)*(2*n + 1)!!/(n + 3)!, {n, 0, 27}] (* Jean-François Alcover, Nov 07 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec((3-sqrt(1-4*x))*(1-sqrt(1-4*x))^3/(16*x^3)) \\ G. C. Greubel, Feb 14 2019
    
  • Sage
    ((3-sqrt(1-4*x))*(1-sqrt(1-4*x))^3/(16*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 14 2019

Formula

a(n) = 2*(5*n+3)*binomial(2*n+1, n)/((n+2)*(n+3)). - Emeric Deutsch, Dec 13 2002
a(n) = leftmost term of M^n*V, M = an infinite tridiagonal matrix with all 1's in the super and subdiagonals and all 2's in the main diagonal; with the rest zeros. V = Vector [1,2,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
a(n) = 2*A000245(n+1) - A000108(n+1). - David Scambler, Oct 08 2012
D-finite with recurrence: 2*(n+3)*a(n) +(-11*n-15)*a(n-1) +6*(2*n-1)*a(n-2)=0. - R. J. Mathar, Aug 25 2013
G.f.: (3-sqrt(1-4*x))*(1-sqrt(1-4*x))^3/(16*x^3). - G. C. Greubel, Feb 14 2019
From Mélika Tebni, Sep 03 2024: (Start)
a(n) = A000108(n+1) - A126079(n+3).
E.g.f.: 4*exp(2*x)*(BesselI(0, 2*x) - 3/(4*x)*BesselI(1, 2*x) - (1-1/x)*BesselI(2, 2*x)). (End)

A320825 Expansion of -(10*x^2 - 6*x + 1)*sqrt(1 - 4*x)/(3*x - 1)^2.

Original entry on oeis.org

-1, 2, 1, 0, -3, -10, -17, 28, 435, 2710, 13489, 60392, 254211, 1028250, 4046977, 15621932, 59463209, 224047866, 838012755, 3118339056, 11563677321, 42790868982, 158180470803, 584617335420, 2161733579313, 8001589660746, 29660171058675, 110136151678696, 409773163539325
Offset: 0

Views

Author

Peter Luschny, Oct 22 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(-(10*x^2-6*x+1)*Sqrt(1-4*x)/(1-3*x)^2)); // G. C. Greubel, Oct 27 2018
  • Maple
    c := n -> catalan(n)*(n-3)*(n+1)/((2*n-3)*(2*n-1)):
    h := n -> hypergeom([1, -n], [5/2 - n], 3/4): A320825 := n -> c(n)*h(n):
    seq(simplify(A320825(n)), n=0..28);
  • Mathematica
    CoefficientList[Series[-(10x^2 - 6x + 1) Sqrt[1 - 4x]/(3x - 1)^2, {x, 0, 28}], x]
  • PARI
    x='x+O('x^40); Vec(-(10*x^2-6*x+1)*sqrt(1-4*x)/(1-3*x)^2) \\ G. C. Greubel, Oct 27 2018
    

Formula

a(n) = c(n)*h(n) where c(n) = Catalan(n)*((n-3)*(n+1))/((2*n-3)*(2*n-1)) and h(n) = hypergeom([1, -n], [5/2 - n], 3/4).
A320825(n) = A320826(n) + A320827(n).
D-finite with recurrence: n*a(n) +(-13*n+15)*a(n-1) +4*(16*n-37)*a(n-2) +2*(-71*n+245)*a(n-3) +60*(2*n-9)*a(n-4)=0. - R. J. Mathar, Jan 23 2020

A126089 Expansion of e.g.f.: (1-2*x)*sqrt(1-4*x).

Original entry on oeis.org

1, -4, 4, 0, -48, -960, -20160, -483840, -13305600, -415134720, -14529715200, -564583219200, -24135932620800, -1126343522304000, -56992982228582400, -3108708121559040000, -181859425111203840000, -11359219476176732160000, -754576722346025779200000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2007

Keywords

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-2*x)*Sqrt(1-4*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Jan 25 2020
    
  • Mathematica
    CoefficientList[Series[(1-2*x)*Sqrt[1-4*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
  • PARI
    seq(n)={Vec(serlaplace((1-2*x)*sqrt(1-4*x + O(x*x^n))))} \\ Andrew Howroyd, Jan 25 2020

Formula

a(n) ~ -2^(2*n-3/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jun 02 2013
D-finite with recurrence: a(n) -4*n*a(n-1) +12*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jan 24 2020
Conjecture D-finite with recurrence: (-n+4)*a(n) +2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Jan 24 2020
Showing 1-3 of 3 results.