A126100 Number of rooted connected unlabeled graphs on n nodes.
0, 1, 1, 3, 11, 58, 407, 4306, 72489, 2111013, 111172234, 10798144310, 1944301471861, 650202565436890, 404697467417019634, 470133531223369393920, 1022561022228933341815171, 4177761667636803276899047351, 32163582481439081597751699343141, 468019937132164016636736323752098741
Offset: 0
Examples
For 3 nodes G is either a path (2 kinds of nodes) or a triangle (one kind of node), for a total of a(3) = 3. For the 5-vertex graphs we have 2 * 1 orbit, 6 * 2 orbits, 8 * 3 orbits, 5 * 4 orbits for a total of 2 + 12 + 24 + 20 = 58.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..23 from David Applegate and N. J. A. Sloane)
Crossrefs
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]]; g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!); seq[m_] := Sum[g[n-1, 1] x^(n-1), {n, 0, m}]/Sum[g[n-1, 0] x^(n-1), {n, 0, m}] + O[x]^m // CoefficientList[#, x]& // Prepend[#, 0]&; seq[20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)} g(n,r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!} seq(n)={concat([0], Vec(Ser(vector(n, n, g(n-1,1)))/Ser(vector(n, n, g(n-1,0)))))} \\ Andrew Howroyd, May 03 2018
Formula
The g.f. A(x) = x+x^2+3*x^3+11*x^4+... satisfies f(x) = 1 + A(x)*g(x), where f(x) = 1+x+2*x^2+6*x^3+20*x^4+... is the g.f. for A000666 and g(x) = 1+x+2*x^2+4*x^3+11*x^4+... is the g.f. for A000088. - Brendan McKay
Extensions
a(5)-a(9) computed by Gordon F. Royle, Mar 05 2007
a(10) and a(11) computed by Brendan McKay, Mar 05 2007
a(12) onwards computed from the generating function, A000088 and A000666 by David Applegate and N. J. A. Sloane, Mar 06 2007
Comments