A126107 Primes p such that 2*p+1 and 2*p+3 are twin primes.
2, 5, 29, 53, 89, 113, 173, 509, 659, 743, 809, 1013, 1499, 1559, 1583, 1733, 2063, 2129, 2273, 2393, 2399, 2549, 2819, 2939, 3329, 3389, 3413, 3779, 4409, 5003, 5849, 6053, 6269, 7193, 7433, 7643, 7823, 8069, 8093, 8513, 8693, 9029, 9059, 9539, 9689
Offset: 1
Examples
a(2)=5 because 2*5+1=11 and 2*5+3=13 are twin primes.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A128436 (primes p such that 2*p-3 and 2*p-1 are twin primes).
Programs
-
Magma
[p: p in PrimesUpTo(10000) | IsPrime(2*p+1) and IsPrime(2*p+3)]; // Vincenzo Librandi, Feb 15 2014
-
Mathematica
Do[p = Prime[ i]; If[PrimeQ[2p + 1] && PrimeQ[2p + 3], Print[p]], {i, 1, 2000}] (* Michael Taktikos, Apr 01 2007 *) Select[Prime[Range[10000]], PrimeQ[2 # + 1] && PrimeQ[2 # + 3] &] (* Vincenzo Librandi, Feb 15 2014 *)
-
PARI
is(p)=isprime(2*p+1) && isprime(2*p+3) && isprime(p) \\ Charles R Greathouse IV, Mar 03 2018
-
PARI
list(lim)=my(v=List(),p=3); forprime(q=5,2*lim+3, if(q-p==2 && isprime(p\2), listput(v,p\2)); p=q); Vec(v) \\ Charles R Greathouse IV, Mar 03 2018