A237810 Primes p such that 2*p+1 and 2*p+7 are also prime.
2, 3, 5, 11, 23, 41, 53, 83, 113, 131, 173, 191, 251, 281, 293, 593, 641, 683, 743, 953, 1031, 1103, 1451, 1481, 1601, 2003, 2063, 2141, 2393, 2693, 2903, 3023, 3413, 3593, 3623, 3761, 3821, 3911, 4211, 4373, 4481, 4733, 4871, 5081, 5303, 5441, 5741, 5903
Offset: 1
Examples
11 is in the sequence because 11, 2*11+1 = 23 and 2*11+7 = 29 are all prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(9200) | IsPrime(2*p+1) and IsPrime(2*p+7)]; // Vincenzo Librandi, Feb 15 2014
-
Mathematica
Select[Prime[Range[10000]], PrimeQ[2 # + 1]&&PrimeQ[2 # + 7]&] (* Vincenzo Librandi, Feb 15 2014 *)
-
PARI
s=[]; forprime(p=2, 10000, if(isprime(2*p+1) && isprime(2*p+7), s=concat(s, p))); s
Comments