A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
Offset: 0
Examples
Number of terms in row n is: n*(n-1)/2 + 1. Row functions B(n,q) begin: B(0,q) = 1; B(1,q) = 1; B(2,q) = 1 + q; B(3,q) = 1 + 2*q + q^2 + q^3; B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6. Triangle begins: 1; 1; 1, 1; 1, 2, 1, 1; 1, 3, 3, 4, 2, 1, 1; 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1; 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1; 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 0..60, flattened
- Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004.
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, x^t, add(b(n-1, max(m, j), t+j) , j=1..m+1)) end: T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)): seq(T(n), n=0..8); # Alois P. Heinz, Aug 02 2021
-
Mathematica
B[0, ] = 1; B[n, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
-
PARI
{B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))} row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
-
PARI
/* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))}
Formula
G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - Alois P. Heinz, Aug 02 2021
Conjecture: R(n,n) is the (n+1)-th reversed row polynomial where R(0,0) = 1, R(n,k) = R(n-1,n-1) + x^n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n. - Mikhail Kurkov, Jul 06 2025
Extensions
Keyword:tabl changed to tabf by R. J. Mathar, Oct 21 2010
Comments