cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006, May 28 2007

Keywords

Comments

Limit of reversed rows equals A126348. Largest term in rows equal A126349.

Examples

			Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
  B(0,q) = 1;
  B(1,q) = 1;
  B(2,q) = 1 + q;
  B(3,q) = 1 + 2*q + q^2 + q^3;
  B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.
Triangle begins:
  1;
  1;
  1, 1;
  1, 2, 1, 1;
  1, 3, 3, 4, 2, 1, 1;
  1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;
  1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;
  1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1;
  ...
		

Crossrefs

Row sums give A000110.
Cf. A126348, A126349; factorial variant: A126470.
Cf. A346772.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(b(n-1, max(m, j), t+j) , j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Aug 02 2021
  • Mathematica
    B[0, ] = 1; B[n, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
  • PARI
    {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
    row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
    
  • PARI
    /* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))}

Formula

G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).
Sum_{k=0..n*(n-1)/2} (n+k) * T(n,k) = A346772(n). - Alois P. Heinz, Aug 02 2021
Conjecture: R(n,n) is the (n+1)-th reversed row polynomial where R(0,0) = 1, R(n,k) = R(n-1,n-1) + x^n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n. - Mikhail Kurkov, Jul 06 2025

Extensions

Keyword:tabl changed to tabf by R. J. Mathar, Oct 21 2010