cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126568 Binomial transform of A026641.

Original entry on oeis.org

1, 2, 7, 29, 127, 572, 2623, 12182, 57115, 269750, 1281457, 6116585, 29310721, 140925176, 679493983, 3284357789, 15909178627, 77208716606, 375330428293, 1827310839359, 8908332730957, 43481990059796, 212472526927393
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2007

Keywords

Comments

The Hankel transform of this sequence is 3^n (see A000244).
Row sums of triangle in A110877. - Philippe Deléham, Oct 10 2007

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (11*x^4-12*x^3-x^2+3*x-1 -Sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( Sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5+32*x^4-31*x^3+ 20*x^2-13*x+2) )); // G. C. Greubel, Feb 15 2019
    
  • Mathematica
    CoefficientList[Series[-(-11x^4 +Sqrt[5x^2-6x+1](5x^3-3x^2-1) +12x^3+x^2 -3x+1)/(-10x^5 +Sqrt[5x^2-6x+1](4x^4-8x^3-3x^2+7x-2) +32x^4-31 x^3+20x^2 -13x+2), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 09 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec((11*x^4 -12*x^3 -x^2 +3*x -1  -sqrt(5*x^2 -6*x +1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5 +32*x^4 -31*x^3 + 20*x^2 -13*x +2)) \\ G. C. Greubel, Feb 15 2019
    
  • Sage
    m=30; a=((11*x^4-12*x^3-x^2+3*x-1 -sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5+32*x^4-31*x^3 + 20*x^2-13*x+2)).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 15 2019

Formula

a(n) = Sum_{0<=k<=n} A110877(n,k). - Philippe Deléham, Oct 10 2007
Conjecture: 4*n*a(n) +2*(2*n-7)*a(n-1) +(-163*n+267)*a(n-2) +10*(23*n-58)*a(n-3) +75*(-n+3)*a(n-4) = 0. - R. J. Mathar, Jun 30 2013
G.f.: (11*x^4 -12*x^3 -x^2 +3*x -1 -sqrt(5*x^2-6*x+1)*(5*x^3-3*x^2-1))/( sqrt(5*x^2-6*x+1)*(4*x^4-8*x^3-3*x^2+7*x-2) -10*x^5 +32*x^4 -31*x^3 + 20*x^2 -13*x +2). - Vladimir Kruchinin, Apr 08 2014
a(n) ~ 5^(n + 1/2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 02 2023