A126644 a(n) = 3*3^n - 3*2^n + 1.
4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796
Offset: 1
Examples
a(8) = 18916.
Links
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Programs
-
Maple
f:=n->3*3^n-3*2^n+1;
-
Mathematica
LinearRecurrence[{6,-11,6},{4,16,58},30] (* Harvey P. Dale, Sep 14 2018 *)
-
PARI
a(n) = 3*3^n - 3*2^n + 1; \\ Michel Marcus, Nov 30 2015
Formula
a(n) = 3*3^n - 3*2^n + 1.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). G.f.: -2*x*(3*x^2-4*x+2) / ((x-1)*(2*x-1)*(3*x-1)). [Colin Barker, Dec 10 2012]
a(n) = 3*A001047(n) + 1. - Hugo Pfoertner, Nov 22 2022
Extensions
New name from Hugo Pfoertner, Nov 22 2022
Comments