A126659 Least number k > 0 such that ((2n-1)^k + 1)/(2n) is prime, or 0 if no such prime exists.
3, 5, 3, 3, 5, 3, 3, 7, 17, 3, 11, 3, 0, 7, 109, 5, 11, 5, 3, 17, 5, 103, 5, 7, 3, 21943, 3, 53, 17, 7, 3, 19, 3, 11, 5, 7, 5, 37, 3, 3, 19, 167, 7, 13, 3, 89, 43
Offset: 2
Links
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- Eric Weisstein's World of Mathematics, Repunit.
Programs
-
Mathematica
A126659[n_] := Module[{k = 1}, If[n == 14, Return[0]]; While[! PrimeQ[((2 n - 1)^k + 1)/(2 n)], k++]; k]; Table[A126659[n], {n, 2, 48}] (* Robert Price, Oct 29 2018 *)
-
PARI
a(n) = {if (n==14, return(0)); my(k=3); while (! isprime(((2*n-1)^k + 1)/(2*n)), k = nextprime(k+1)); k;} \\ Michel Marcus, Nov 23 2018
Formula
a(n) = A084742(2n-1).
Comments