cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A084742 Least k such that (n^k+1)/(n+1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, 7, 13, 5, 3, 37, 3, 3, 5, 3, 293, 19, 7, 167, 7, 7, 709, 13, 3, 3, 37, 89, 71, 43, 37
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Comments

When (n^k+1)/(n+1) is prime, k must be prime. As mentioned by Dubner and Granlund, when n is a perfect power (the power is greater than 2), then (n^k+1)/(n+1) will usually be composite for all k, which is the case for n = 8, 27, 32 and 64. a(n) are only probable primes for n = {53, 124, 150, 182, 205, 222, 296}.
a(n) = 0 if n = {8, 27, 32, 64, 125, 243, ...}. - Eric Chen, Nov 18 2014
More terms: a(124) = 16427, a(150) = 6883, a(182) = 1487, a(205) = 5449, a(222) = 1657, a(296) = 1303. For n up to 300, a(n) is currently unknown only for n = {97, 103, 113, 175, 186, 187, 188, 220, 284}. All other terms up to a(300) are less than 1000. - Eric Chen, Nov 18 2014
a(97) > 31000. - Eric Chen, Nov 18 2014
a(311) = 2707, a(313) = 4451. - Eric Chen, Nov 20 2014
a(n)=3 if and only if n^2-n+1 is a prime; that is, n belongs to A055494. - Thomas Ordowski, Sep 19 2015
From Altug Alkan, Sep 29 2015: (Start)
a(n)=5 if and only if Phi(10, n) is prime and Phi(6, n) is composite. n belongs to A246392.
a(n)=7 if and only if Phi(14, n) is prime, and Phi(10, n) and Phi(6, n) are both composite. n belongs to A250174.
a(n)=11 if and only if Phi(22, n) is prime, and Phi(14, n), Phi(10, n) and Phi(6, n) are all composite. n belongs to A250178.
Where Phi(k, n) is the k-th cyclotomic polynomial. (End)
a(97) > 800000 (or a(97) = 0). - Wang Runsen, May 10 2023

Examples

			a(5) = 5 as (5^5 + 1)/(5 + 1) = 1 - 5 + 5^2 - 5^3 + 5^4 = 521 is a prime.
a(7) = 3 as (7^3 + 1)/(7 + 1) = 1 - 7 + 7^2 = 43 is a prime.
		

Crossrefs

Programs

  • PARI
    a(n) = {l=List([8, 27, 32, 64, 125, 243, 324, 343]); for(q=1, #l, if(n==l[q], return(0))); k=2; while(k, s=(n^prime(k)+1)/(n+1); if(ispseudoprime(s), return(prime(k))); k++)}
    n=2; while(n<361, print1(a(n), ", "); n++) \\ Eric Chen, Nov 25 2014

Extensions

More terms from T. D. Noe, Jan 22 2004

A084740 Least k such that (n^k-1)/(n-1) is prime, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2, 13, 3, 349, 2, 3, 2, 5, 5, 19, 2, 127, 19, 0, 3, 4229, 2, 11, 3, 17, 7, 3, 2, 3, 2, 7, 3, 5, 0, 19, 2, 19, 5, 3, 2, 3, 2, 5, 5, 3, 41, 3, 2, 5, 3, 0, 2, 5, 17, 5, 11, 7, 2, 3, 3, 4421, 439, 7, 5, 7, 2, 17, 13, 3, 2, 3, 2, 19, 97, 3, 2, 17, 2, 17, 3, 3, 2, 23, 29, 7, 59
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Comments

When (n^k-1)/(n-1) is prime, k must be prime. As mentioned by Dubner, when n is a perfect power, then (n^k-1)/(n-1) will usually be composite for all k, which is the case for n = 9, 25, 32, 49, 64, 81, 121, 125, 144, 169, 216, 225, 243, 289, 324, 343, ... - T. D. Noe, Jan 30 2004
a(152) > prime(1100) or 0. - Derek Orr, Nov 29 2014
a(n)=2 if and only if n=p-1, where p is an odd prime; that is, n belongs to A006093, except 2. - Thomas Ordowski, Sep 19 2015
Probably a(152) = 270217 since (152^270217-1)/(152-1) has been shown to be probably prime. - Michael Stocker, Jan 24 2019

Examples

			a(7) = 5 as (7^5 - 1 )/(7 - 1) = 2801 = 1 + 7 + 7^2 + 7^3 + 7^4 is a prime but no smaller partial sum yields a prime.
		

Crossrefs

Programs

  • PARI
    a(n) = {l=List([9, 25, 32, 49, 64, 81, 121, 125, 144, 169, 216, 225, 243, 289, 324, 343]); for(q=1, #l, if(n==l[q], return(0))); k=1; while(k, s=(n^prime(k)-1)/(n-1); if(ispseudoprime(s), return(prime(k))); k++)}
    n=2; while(n<361, print1(a(n), ", "); n++) \\ Derek Orr, Jul 13 2014

Extensions

More terms from T. D. Noe, Jan 23 2004

A126856 Numbers n such that (31^n + 1)/32 is prime.

Original entry on oeis.org

109, 461, 1061, 50777
Offset: 1

Views

Author

Alexander Adamchuk, Mar 23 2007

Keywords

Comments

All terms are primes.
a(5) > 10^5. - Robert Price, Jul 12 2013

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (31^p + 1)/32 ], Print[p] ], {n,1,1100} ]
  • PARI
    is(n)=isprime((31^n+1)/32) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(4) from Robert Price, Jul 12 2013

A229145 Numbers k such that (36^k + 1)/37 is prime.

Original entry on oeis.org

31, 191, 257, 367, 3061, 110503, 1145393
Offset: 1

Views

Author

Robert Price, Sep 15 2013

Keywords

Comments

All such numbers k are prime.
Note that a(6) = 110503 corresponds to (36^110503 + 1)/37, which is only a probable prime with 171975 digits.
The primes corresponding to the terms of this sequence have 1 as their last digit and an even number as their next-to-last digit. - Iain Fox, Dec 08 2017

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (36^p + 1)/37 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=isprime((36^n+1)/37) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6) = 110503 (posted by Lelio R. Paula on primenumbers.net) from Paul Bourdelais, Dec 08 2017
a(7) from Paul Bourdelais, Nov 03 2023

A185240 Numbers k such that (35^k + 1)/36 is prime.

Original entry on oeis.org

11, 13, 79, 127, 503, 617, 709, 857, 1499, 3823, 135623, 280979
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are primes. a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (35^p + 1)/36 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=isprime((35^n+1)/36) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(11)=135623 found as probable prime and added by Paul Bourdelais, Jul 05 2018
a(12) from Paul Bourdelais, Sep 13 2021

A229524 Numbers k such that (38^k + 1)/39 is prime.

Original entry on oeis.org

5, 167, 1063, 1597, 2749, 3373, 13691, 83891, 131591
Offset: 1

Views

Author

Robert Price, Sep 25 2013

Keywords

Comments

All terms are primes. a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (38^p + 1)/39 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((38^n+1)/39) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(9)=131591 corresponds to a probable prime discovered by Paul Bourdelais, Jul 03 2018

A229663 Numbers n such that (40^n + 1)/41 is prime.

Original entry on oeis.org

53, 67, 1217, 5867, 6143, 11681, 29959
Offset: 1

Views

Author

Robert Price, Sep 27 2013

Keywords

Comments

All terms are primes.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (40^p + 1)/41 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((40^n+1)/41) \\ Charles R Greathouse IV, Feb 17 2017

A230036 Numbers n such that (39^n + 1)/40 is prime.

Original entry on oeis.org

3, 13, 149, 15377
Offset: 1

Views

Author

Robert Price, Oct 05 2013

Keywords

Comments

All terms are primes.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (39^p + 1)/40 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((39^n+1)/40) \\ Charles R Greathouse IV, Feb 17 2017

A231604 Numbers n such that (42^n + 1)/43 is prime.

Original entry on oeis.org

3, 709, 1637, 17911, 127609, 172663
Offset: 1

Views

Author

Robert Price, Nov 11 2013

Keywords

Comments

The first 5 terms are primes.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (42^p + 1)/43 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((42^n+1)/43) \\ Charles R Greathouse IV, Feb 20 2017

Extensions

a(5)=127609 corresponds to a probable prime discovered by Paul Bourdelais, Jul 02 2018
a(6)=172663 corresponds to a probable prime discovered by Paul Bourdelais, Jul 29 2019

A231865 Numbers n such that (43^n + 1)/44 is prime.

Original entry on oeis.org

5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573
Offset: 1

Views

Author

Robert Price, Nov 14 2013

Keywords

Comments

All terms are primes.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (43^p + 1)/44 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((43^n+1)/44) \\ Charles R Greathouse IV, Feb 20 2017
Showing 1-10 of 16 results. Next