cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376848 Numbers k such that phi(k + phi(k)) = phi(k) + phi(phi(k)), where phi = A000010.

Original entry on oeis.org

2, 5, 9, 10, 14, 18, 20, 27, 28, 36, 38, 40, 46, 54, 56, 72, 76, 78, 80, 81, 92, 108, 112, 144, 152, 156, 160, 162, 184, 216, 224, 234, 243, 258, 288, 294, 304, 312, 320, 324, 368, 432, 438, 448, 468, 486, 516, 526, 570, 576, 588, 608, 609, 624, 640, 648, 702, 718, 729, 736, 754, 774, 864, 876
Offset: 1

Views

Author

Robert Israel, Oct 06 2024

Keywords

Comments

If k is in A126955, then 8*k + 6 is a term.

Examples

			a(4) = 10 is a term because phi(10) = 4, phi(4) = 2, and phi(10 + 4) = phi(14) = 6 = 4 + 2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(k) uses numtheory; local s;
     s:= phi(k);
     phi(k+s) = s + phi(s)
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    Select[Range[880], EulerPhi[ #+EulerPhi[#]]==EulerPhi[#]+EulerPhi[EulerPhi[#]] &] (* Stefano Spezia, Oct 07 2024 *)

A126956 Numbers n such that 3n+2, 4n+3 and 5n+4 are primes.

Original entry on oeis.org

5, 17, 77, 89, 119, 185, 257, 287, 395, 665, 755, 797, 929, 1175, 1259, 1337, 1379, 1445, 1469, 1769, 2057, 2105, 3125, 3419, 3437, 3629, 3815, 3989, 4079, 4157, 4175, 4217, 4367, 4445, 4847, 5045, 5375, 6089, 6137, 6167, 6359, 6419, 6485, 6725, 6887
Offset: 1

Views

Author

J. M. Bergot, Mar 19 2007

Keywords

Examples

			Take n = 185. Then 3*185 + 2 = 557, 4*185 + 3 = 743 and 5*185 + 4 = 929 are primes.
		

Crossrefs

Intersection of A024893, A095278, A024897. Cf. A126955.

Programs

  • Mathematica
    Select[Range[7000], PrimeQ[3# + 2] && PrimeQ[4# + 3] && PrimeQ[5# + 4] &] (* Ray Chandler, Mar 20 2007 *)
    Select[Range[7000],AllTrue[{3#+2,4#+3,5#+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *)

Extensions

Corrected and extended by Ray Chandler, Stuart Clary, Robert G. Wilson v and Zak Seidov, Mar 20 2007
Showing 1-2 of 2 results.