cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006560 Smallest starting prime for n consecutive primes in arithmetic progression.

Original entry on oeis.org

2, 2, 3, 251, 9843019, 121174811
Offset: 1

Views

Author

Keywords

Comments

The primes following a(5) and a(6) occur at a(n)+30*k, k=0..(n-1). a(6) was found by Lander and Parkin. The next term requires a spacing >= 210. The expected size is a(7) > 10^21 (see link). - Hugo Pfoertner, Jun 25 2004
From Daniel Forgues, Jan 17 2011: (Start)
It is conjectured that there are arithmetic progressions of n consecutive primes for any n.
Common differences of first and smallest AP of n >= 1 consecutive primes: {0, 1, 2, 6, 30, 30, >= 210, >= 210, >= 210, >= 210, >= 2310, ...} (End)
a(7) <= 71137654873189893604531, found by P. Zimmermann, cf. J. K. Andersen link. - Bert Dobbelaere, Jul 27 2022

Examples

			First and smallest occurrence of n, n >= 1, consecutive primes in arithmetic progression:
a(1) = 2: (2) (degenerate arithmetic progression);
a(2) = 2: (2, 3) (degenerate arithmetic progression);
a(3) = 3: (3, 5, 7);
a(4) = 251: (251, 257, 263, 269);
a(5) = 9843019: (9843019, 9843049, 9843079, 9843109, 9843139);
a(6) = 121174811: (121174811, 121174841, 121174871, 121174901, 121174931, 121174961);
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(5) corresponds to A052243(20) followed by A052243(21) 9843049.
Cf. A089180: indices primes a(n).
Cf. A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4), A033451: start of CPAP-4 with common difference 6, A052239: start of first CPAP-4 with common difference 6n.
Cf. A059044: start of 5 consecutive primes in arithmetic progression, A210727: CPAP-5 with common difference 60.
Cf. A058362: start of 6 consecutive primes in arithmetic progression.

Programs

  • Mathematica
    Join[{2},Table[SelectFirst[Partition[Prime[Range[691*10^4]],n,1], Length[ Union[ Differences[ #]]] == 1&][[1]],{n,2,6}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 10 2019 *)

Formula

a(n) = A000040(A089180(n)), or A089180(n) = A000720(a(n)). - M. F. Hasler, Oct 27 2018

Extensions

Edited by Daniel Forgues, Jan 17 2011

A093364 Gaps associated with the arithmetic progressions of primes in A005115.

Original entry on oeis.org

0, 1, 2, 6, 6, 30, 150, 210, 210, 210, 13860, 13860, 60060, 420420, 4144140, 9699690, 87297210, 717777060, 4180566390, 18846497670, 26004868890
Offset: 1

Views

Author

Hugo Pfoertner, Apr 27 2004

Keywords

Comments

See A005115 for comments, references, sources, related sequences.

Crossrefs

Extensions

Entry revised by N. J. A. Sloane Jan 26 2006 based on A005115.
Showing 1-2 of 2 results.