cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A126989 Gaps associated with the first and smallest arithmetic progressions of n consecutive primes in A006560.

Original entry on oeis.org

0, 1, 2, 6, 30, 30, 210
Offset: 1

Views

Author

Artur Jasinski, Jan 01 2007

Keywords

Comments

The gap for the first and smallest AP of 7 consecutive primes is at least 210 (so the 7th term is not definitive).

References

  • P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.

Crossrefs

Extensions

a(7) corrected by Stephen Tucker, Jan 25 2009

A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.

Original entry on oeis.org

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
Primes which are the average of three consecutive primes. - Peter Schorn, Apr 30 2025

Examples

			5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.

Programs

  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = filter ((== 1) . a010051) a075540_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = h a000040_list where
       h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
    p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
    Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
  • PARI
    betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(prime(x)",")) ) } \\ Cino Hilliard, Jan 25 2005
    
  • PARI
    forprime(p=1,999, p-precprime(n-1)==nextprime(p+1)-p && print1(p",")) \\ M. F. Hasler, Jun 01 2013
    
  • PARI
    is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    from sympy import nextprime; p, q, r = 2, 3, 5
    while q < 6000:
        if 2*q == p + r: print(q, end = ", ")
        p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021

Formula

2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024

Extensions

Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011

A029707 Numbers n such that the n-th and the (n+1)-st primes are twin primes.

Original entry on oeis.org

2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, 57, 60, 64, 69, 81, 83, 89, 98, 104, 109, 113, 116, 120, 140, 142, 144, 148, 152, 171, 173, 176, 178, 182, 190, 201, 206, 209, 212, 215, 225, 230, 234, 236, 253, 256, 262, 265, 268, 277
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Numbers m such that prime(m)^2 == 1 mod (prime(m) + prime(m + 1)). - Zak Seidov, Sep 18 2013
First differences are A027833. The complement is A049579. - Gus Wiseman, Dec 03 2024

Crossrefs

Cf. A014574, A027833 (first differences), A007508. Equals PrimePi(A001359) (cf. A000720).
The complement is A049579, first differences A251092 except first term.
Lengths of runs of terms differing by 2 are A179067.
The first differences have run-lengths A373820 except first term.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A038664 finds the first prime gap of 2n.
A046933 counts composite numbers between primes.
For prime runs: A005381, A006512, A025584, A067774.

Programs

  • Maple
    A029707 := proc(n)
        numtheory[pi](A001359(n)) ;
    end proc:
    seq(A029707(n),n=1..30); # R. J. Mathar, Feb 19 2017
  • Mathematica
    Select[ Range@300, PrimeQ[ Prime@# + 2] &] (* Robert G. Wilson v, Mar 11 2007 *)
    Flatten[Position[Flatten[Differences/@Partition[Prime[Range[100]],2,1]], 2]](* Harvey P. Dale, Jun 05 2014 *)
  • Sage
    def A029707(n) :
       a = [ ]
       for i in (1..n) :
          if (nth_prime(i+1)-nth_prime(i) == 2) :
             a.append(i)
       return(a)
    A029707(277) # Jani Melik, May 15 2014

Formula

a(n) = A107770(n) - 1. - Juri-Stepan Gerasimov, Dec 16 2009

A333254 Lengths of maximal runs in the sequence of prime gaps (A001223).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.
Also lengths of maximal arithmetic progressions of consecutive primes.

Examples

			The prime gaps split into the following runs: (1), (2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), (2), (6), (4), ...
		

Crossrefs

The version for A000002 is A000002. Similarly for A001462.
The unequal version is A333216.
The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The strictly decreasing version is A333252.
The strictly increasing version is A333253.
Positions of first appearances are A335406.
The first term of the first length-n arithmetic progression of consecutive primes is A006560(n), with index A089180(n).
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Positions of adjacent unequal prime gaps are A333214.

Programs

  • Maple
    p:= 3: t:= 1: R:= NULL: s:= 1: count:= 0:
    for i from 2 while count < 100 do
      q:= nextprime(p);
      g:= q-p; p:= q;
      if g = t then s:= s+1
      else count:= count+1; R:= R, s; t:= g; s:= 1;
      fi
    od:
    R; # Robert Israel, Jan 06 2021
  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1==#2&]//Most

Formula

Partial sums are A333214.

A054800 First term of balanced prime quartets: p(m+1)-p(m) = p(m+2)-p(m+1) = p(m+3)-p(m+2).

Original entry on oeis.org

251, 1741, 3301, 5101, 5381, 6311, 6361, 12641, 13451, 14741, 15791, 15901, 17471, 18211, 19471, 23321, 26171, 30091, 30631, 53611, 56081, 62201, 63691, 71341, 74453, 75521, 76543, 77551, 78791, 80911, 82781, 83431, 84431, 89101, 89381
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

This sequence is infinite if Dickson's conjecture holds. - Charles R Greathouse IV, Apr 23 2011
This is actually the complete list of primes starting a CPAP-4 (set of 4 consecutive primes in arithmetic progression). It equals A033451 for a(1..24), but it contains a(25) = 74453 which starts a CPAP-4 with common difference 18 (the first one with a difference > 6) and therefore is not in A033451. - M. F. Hasler, Oct 26 2018

Examples

			a(1) = 251 = prime(54) = A000040(54) and prime(55) - prime(54) = prime(56)-prime(55) = 6. - _Zak Seidov_, Apr 23 2011
		

Crossrefs

Cf. A006560 (first prime to start a CPAP-n).
Start of CPAP-4 with given common difference (in square brackets): A033451 [6], A033447 [12], A033448 [18], A052242 [24], A052243 [30], A058252 [36], A058323 [42], A067388 [48], A259224 [54], A210683 [60].

Programs

  • Mathematica
    Select[Partition[Prime[Range[9000]],4,1],Length[Union[Differences[#]]] == 1&][[All,1]] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e4, t=s-r; if(t==r-q&&t==q-p, print1(p", ")); p=q;q=r;r=s) \\ Charles R Greathouse IV, Feb 14 2013

A005115 Let i, i+d, i+2d, ..., i+(n-1)d be an n-term arithmetic progression of primes; choose the one which minimizes the last term; then a(n) = last term i+(n-1)d.

Original entry on oeis.org

2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, 6269243827111
Offset: 1

Views

Author

Keywords

Comments

In other words, smallest prime which is at the end of an arithmetic progression of n primes.
For the corresponding values of the first term and the common difference, see A113827 and A093364. For the actual arithmetic progressions, see A133277.
One may also minimize the common difference: this leads to A033189, A033188 and A113872.
One may also specify that the first term is the n-th prime and then minimize the common difference (or, equally, the last term): this leads to A088430 and A113834.
One may also ask for n consecutive primes in arithmetic progression: this gives A006560.

Examples

			n, AP, last term
1 2 2
2 2+j 3
3 3+2j 7
4 5+6j 23
5 5+6j 29
6 7+30j 157
7 7+150j 907
8 199+210j 1669
9 199+210j 1879
10 199+210j 2089
11 110437+13860j 249037
12 110437+13860j 262897
..........................
a(11)=249037 since 110437,124297,...,235177,249037 is an arithmetic progression of 11 primes ending with 249037 and it is the least number with this property.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the associated gaps, see A093364. For the initial terms, see A113827. For the arithmetic progressions, see A133277.

Programs

  • Mathematica
    (* This program will generate the 4 to 12 terms to use a[n_] to generate term 13 or higher, it will have a prolonged run time. *) a[n_] := Module[{i, p, found, j, df, k}, i = 1; While[i++; p = Prime[i]; found = 0; j = 0; While[j++; df = 6*j; (p > ((n - 1)*df)) && (found == 0), found = 1; Do[If[! PrimeQ[p - k*df], found = 0], {k, 1, n - 1}]]; found == 0]; p]; Table[a[i], {i, 4, 12}]

Formula

Green & Tao prove that this sequence is infinite, and further a(n) < 2^2^2^2^2^2^2^2^O(n). Granville conjectures that a(n) <= n! + 1 for n >= 3 and give a heuristic suggesting a(n) is around (exp(1-gamma) n/2)^(n/2). - Charles R Greathouse IV, Feb 26 2013

Extensions

a(11)-a(13) from Michael Somos, Mar 14 2004
a(14) and corrected version of a(7) from Hugo Pfoertner, Apr 27 2004
a(15)-a(17) from Don Reble, Apr 27 2004
a(18)-a(21) from Granville's paper, Jan 26 2006
Entry revised by N. J. A. Sloane, Jan 26 2006, Oct 17 2007

A054819 First term of weak prime quartet: p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2).

Original entry on oeis.org

17, 41, 79, 107, 227, 281, 311, 347, 349, 379, 397, 439, 461, 499, 569, 641, 673, 677, 827, 857, 881, 907, 1031, 1061, 1091, 1187, 1229, 1277, 1301, 1319, 1367, 1427, 1429, 1451, 1487, 1489, 1549, 1607, 1619, 1621, 1697, 1877, 1997, 2027, 2087, 2153
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Examples

			From _Gus Wiseman_, May 31 2020: (Start)
The first 10 strictly increasing prime gap quartets:
   17   19   23   29
   41   43   47   53
   79   83   89   97
  107  109  113  127
  227  229  233  239
  281  283  293  307
  311  313  317  331
  347  349  353  359
  349  353  359  367
  379  383  389  397
(End)
		

Crossrefs

Prime gaps are A001223.
Second prime gaps are A036263.
Strictly decreasing prime gap quartets are A335278.
Strictly increasing prime gap quartets are A335277.
Equal prime gap quartets are A090832.
Weakly increasing prime gap quartets are A333383.
Weakly decreasing prime gap quartets are A333488.
Unequal prime gap quartets are A333490.
Partially unequal prime gap quartets are A333491.
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.
Lengths of maximal weakly decreasing sequences of prime gaps are A333212.
Lengths of maximal strictly increasing sequences of prime gaps are A333253.

Programs

  • Mathematica
    wpqQ[lst_]:=Module[{diffs=Differences[lst]},diffs[[1]]Harvey P. Dale, Jun 12 2012 *)
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-xx] (* Gus Wiseman, May 31 2020 *)

Formula

a(n) = prime(A335277(n)). - Gus Wiseman, May 31 2020

A054804 First term of strong prime quartets: prime(m+1)-prime(m) > prime(m+2)-prime(m+1) > prime(m+3)-prime(m+2).

Original entry on oeis.org

31, 61, 89, 211, 271, 293, 449, 467, 607, 619, 709, 743, 839, 863, 919, 1069, 1291, 1409, 1439, 1459, 1531, 1637, 1657, 1669, 1723, 1759, 1777, 1831, 1847, 1861, 1979, 1987, 2039, 2131, 2311, 2357, 2371, 2447, 2459, 2477, 2503, 2521, 2557, 2593, 2633
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

Primes preceding the first member of pairs of consecutive primes in A051634 ("strong primes"), see example. (A051634 lists the middle member of the triplets, here we list the first member of the quadruplets.) - M. F. Hasler, Oct 27 2018, corrected thanks to Gus Wiseman, Jun 01 2020.

Examples

			The first 10 strictly decreasing prime gap quartets:
   31  37  41  43
   61  67  71  73
   89  97 101 103
  211 223 227 229
  271 277 281 283
  293 307 311 313
  449 457 461 463
  467 479 487 491
  607 613 617 619
  619 631 641 643
For example, the primes (211,223,227,229) have differences (12,4,2), which are strictly decreasing, so 211 is in the sequence.
The second and third term of each quadruplet are consecutive terms in A051634: this is a characteristic property of this sequence. - _M. F. Hasler_, Jun 01 2020
		

Crossrefs

Prime gaps are A001223.
Second prime gaps are A036263.
All of the following use prime indices rather than the primes themselves:
- Strictly decreasing prime gap quartets are A335278.
- Strictly increasing prime gap quartets are A335277.
- Equal prime gap quartets are A090832.
- Weakly increasing prime gap quartets are A333383.
- Weakly decreasing prime gap quartets are A333488.
- Unequal prime gap quartets are A333490.
- Partially unequal prime gap quartets are A333491.
- Adjacent equal prime gaps are A064113.
- Strict ascents in prime gaps are A258025.
- Strict descents in prime gaps are A258026.
- Adjacent unequal prime gaps are A333214.
- Weak ascents in prime gaps are A333230.
- Weak descents in prime gaps are A333231.
Maximal weakly increasing intervals of prime gaps are A333215.
Maximal strictly decreasing intervals of prime gaps are A333252.

Programs

  • Maple
    primes:= select(isprime,[seq(i,i=3..10000,2)]):
    L:=  primes[2..-1]-primes[1..-2]:
    primes[select(t -> L[t+2] < L[t+1] and L[t+1] < L[t], [$1..nops(L)-2])]; # Robert Israel, Jun 28 2018
  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x>z-y>t-z:>x] (* Gus Wiseman, May 31 2020 *)
    Select[Partition[Prime[Range[400]],4,1],Max[Differences[#,2]]<0&][[All,1]] (* Harvey P. Dale, Jan 12 2023 *)

Formula

a(n) = prime(A335278(n)). - Gus Wiseman, May 31 2020

A059044 Initial primes of sets of 5 consecutive primes in arithmetic progression.

Original entry on oeis.org

9843019, 37772429, 53868649, 71427757, 78364549, 79080577, 98150021, 99591433, 104436889, 106457509, 111267419, 121174811, 121174841, 168236119, 199450099, 203908891, 207068803, 216618187, 230952859, 234058871, 235524781, 253412317, 263651161, 268843033, 294485363, 296239787
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com), Dec 18 2000

Keywords

Comments

Each set has a constant difference of 30, for all of the terms listed so far.
It is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression. As of December 2000, the record is 10 primes.
The first CPAP-5 with common difference 60 starts at 6182296037 ~ 6e9, cf. A210727. This sequence consists of first members of pairs of consecutive primes in A054800 (see also formula): a(1..6) = A054800({1555, 4555, 6123, 7695, 8306, 8371}). Conversely, pairs of consecutive primes in this sequence yield a term of A058362, i.e., they start a sequence of 6 consecutive primes in arithmetic progression (CPAP-6): e.g., the nearby values a(12) = 121174811, a(13) = 121174841 = a(12) + 30 indicate such a term, whence A006560(6) = A058362(1) = a(12). The first CPAP-6 with common difference 60 starts at 293826343073 ~ 3e11, cf. A210727. Longer CPAP's must have common difference >= 210. - M. F. Hasler, Oct 26 2018
About 500 initial terms of this sequence are the same as for the sequence "First of 5 consecutive primes separated by gaps of 30". The first 10^4 terms of A052243 give 281 terms of this sequence (up to ~ 3.34e9) with the same formula as the one using A054800, but as the above comment says, this will miss terms beyond twice that range. - M. F. Hasler, Jan 02 2020

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 181.

Crossrefs

Cf. A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4).
Cf. A033451, A033447, A033448, A052242, A052243, A058252, A058323, A067388: start of CPAP-4 with common difference 6, 12, 18, ..., 48.
Cf. A052239: start of first CPAP-4 with common difference 6n.
Cf. A058362: start of 6 consecutive primes in arithmetic progression.
Cf. A006560: first prime to start a CPAP-n.

Programs

  • Mathematica
    Select[Partition[Prime[Range[14000000]],5,1],Length[Union[ Differences[ #]]]==1&] (* Harvey P. Dale, Jun 22 2013 *)
  • PARI
    A059044(n,p=2,c,g,P)={forprime(q=p+1,, if(p+g!=p+=g=q-p, next, q!=P+2*g, c=3, c++>4, print1(P-2*g,",");n--||break);P=q-g);P-2*g} \\ This does not impose the gap to be 30, but it happens to be the case for the first values. - M. F. Hasler, Oct 26 2018

Formula

Found by exhaustive search for 5 primes in arithmetic progression with all other intermediate numbers being composite.
A059044 = { A054800(i) | A054800(i+1) - A151800(A054800(i)) } with the nextprime function A151800(prime(k)) = prime(k+1) = prime(k) + A001223(k). - M. F. Hasler, Oct 27 2018, edited Jan 02 2020.

Extensions

a(16)-a(22) from Donovan Johnson, Sep 05 2008
Reference added by Harvey P. Dale, Jun 22 2013
Edited (definition clarified, cross-references corrected and extended) by M. F. Hasler, Oct 26 2018

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most
Showing 1-10 of 41 results. Next