cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127059 Column 2 of triangle A127058.

Original entry on oeis.org

3, 12, 108, 1332, 19908, 342252, 6583788, 139380372, 3211960068, 79950396492, 2137119431148, 61065403377012, 1858069709657028, 60006976422450732, 2050924514408985708, 73988085260209757652, 2810535115787602525188
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

Column 0 of triangle A127058 is A000698, the number of shellings of an n-cube, divided by 2^n n!. Column 1 of triangle A127058 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.

Crossrefs

Cf. A127058; other columns: A000698, A115974; A127060.

Programs

  • Mathematica
    A127058[n_, k_]:= A127058[n, k] = If[k==n, n+1, Sum[A127058[j+k, k]* A127058[n-j, k+1], {j,0,n - k - 1}]]; Table[A127058[n+2, 2], {n, 0, 30}] (* G. C. Greubel, Jun 09 2019 *)
  • PARI
    c(n)=(2*n)!/(2^n*n!);
    a(n)=if(n==0, 3, (c(n+3) - 3*c(n+2) - sum(k=0, n-1, a(k)*(c(n+2-k)-c(n+1-k)) ))/2  );
    vector(20, n, n--; a(n)) \\ G. C. Greubel, Jun 09 2019
    
  • Sage
    @CachedFunction
    def A127058(n, k):
        if (k==n): return n+1
        else: return sum(A127058(j+k, k)*A127058(n-j, k+1) for j in (0..n-k-1))
    [A127058(n+2,2) for n in (0..30)] # G. C. Greubel, Jun 09 2019

Formula

a(0) = 3 and for n>0 a(n) = (1/2)*(c(n+3)-3*c(n+2)-Sum_{k=0..n-1} a(k)*(c(n+2-k)-c(n+1-k))) with c(n) = (2*n)!/(2^n*n!). - Groux Roland, Nov 14 2009
G.f.: A(x) = (1 - T(0))/x, T(k) = 1 - x*(k+3)/T(k+1) (continued fraction). - Sergei N. Gladkovskii, Dec 13 2011
G.f.: 1/x - Q(0)/x, where Q(k)= 1 - x*(2*k+3)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) ~ 2^(n + 5/2) * n^(n+3) / exp(n). - Vaclav Kotesovec, Jan 02 2019

A127058 Triangle, read by rows, defined by: T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) for n > k >= 0, with T(n,n) = n+1.

Original entry on oeis.org

1, 2, 2, 10, 6, 3, 74, 42, 12, 4, 706, 414, 108, 20, 5, 8162, 5058, 1332, 220, 30, 6, 110410, 72486, 19908, 3260, 390, 42, 7, 1708394, 1182762, 342252, 57700, 6750, 630, 56, 8, 29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9, 576037442
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

Column 0 is A000698, the number of shellings of an n-cube, divided by 2^n n!.
Column 1 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.

Examples

			Other recurrences exist, as shown by:
column 0 = A000698: T(n,0) = (2n+1)!! - Sum_{k=1..n} (2k-1)!!*T(n-k,0);
column 1 = A115974: T(n,1) = T(n+1,0) - Sum_{k=0..n-1} T(k,1)*T(n-k,0).
Illustrate the recurrence:
T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) (n > k >= 0)
at column k=1:
T(2,1) = T(1,1)*T(2,2) = 2*3 = 6;
T(3,1) = T(1,1)*T(3,2) + T(2,1)*T(2,2) = 2*12 + 6*3 = 42;
T(4,1) = T(1,1)*T(4,2) + T(2,1)*T(3,2) + T(3,1)*T(2,2) = 2*108 + 6*12 + 42*3 = 414;
at column k=2:
T(3,2) = T(2,2)*T(3,3) = 3*4 = 12;
T(4,2) = T(2,2)*T(4,3) + T(3,2)*T(3,3) = 3*20 + 12*4 = 108;
T(5,2) = T(2,2)*T(5,3) + T(3,2)*T(4,3) + T(4,2)*T(3,3) = 3*220 + 12*20 + 108*4 = 1332.
Triangle begins:
         1;
         2,        2;
        10,        6,       3;
        74,       42,      12,       4;
       706,      414,     108,      20,      5;
      8162,     5058,    1332,     220,     30,     6;
    110410,    72486,   19908,    3260,    390,    42,   7;
   1708394,  1182762,  342252,   57700,   6750,   630,  56,  8;
  29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9; ...
		

Crossrefs

Columns: A000698, A115974, A127059.
Row sums: A127060.
Cf. A001147 ((2n-1)!!).

Programs

  • Mathematica
    T[n_,k_]:= If[k==n, n+1, Sum[T[j+k,k]*T[n-j,k+1], {j,0,n-k-1}]];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
  • PARI
    {T(n,k)=if(n==k,n+1,sum(j=0,n-k-1,T(j+k,k)*T(n-j,k+1)))}
    
  • Sage
    def T(n, k):
        if (k==n): return n+1
        else: return sum(T(j+k,k)*T(n-j,k+1) for j in (0..n-k-1))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 03 2019
Showing 1-2 of 2 results.