cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A167872 A sequence of moments connected with Feynman numbers (A000698): Half the number of Feynman diagrams of order 2(n+1), for the electron self-energy in quantum electrodynamics (QED), i.e., all proper diagrams including Furry vanishing diagrams (those that vanish in 4-dimensional QED because of Furry theorem).

Original entry on oeis.org

1, 3, 21, 207, 2529, 36243, 591381, 10786527, 217179009, 4782674403, 114370025301, 2952426526767, 81864375589089, 2427523337157363, 76683680366193621, 2571609710380950207, 91265370849151405569, 3417956847888948899523
Offset: 0

Views

Author

Groux Roland, Nov 14 2009

Keywords

Comments

a(n) is the moment of order 2*n of the probability density function defined by rho(x) = sqrt(Pi/2)*exp(-x^2/2)/((x*phi(x)+1)^2 + Pi^2*x^2*exp(-x^2)), where phi(x) = Integral_{t=-oo..oo} t*log(abs(x-t))*exp(-t^2/2) dt.

Examples

			G.f. = 1 + 3*x + 21*x^2 + 207*x^3 + 2529*x^4 + 36243*x^5 + 591381*x^6 + ...
		

References

  • Roland Groux. Polynômes orthogonaux et transformations intégrales. Cepadues. 2008. pages 195..206.

Crossrefs

Programs

  • Mathematica
    (* f = A000698 *) f[n_] := f[n] = (2*n - 1)!! - Sum[f[n - k]*(2*k - 1)!!, {k, 1, n - 1}]; a[n_] := a[n] = f[n + 2]/2 - Sum[f[n + 1 - k]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 03 2013, from 3rd formula *)
    nmax = 20; CoefficientList[Series[1/(1 + x + ContinuedFractionK[-(k - (-1)^k)*x, 1, {k, 3, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2022, after Peter Bala *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 3) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* Michael Somos, Jul 23 2011 */

Formula

Sum_{n>=0} a(n)/z^(2n+1) = (1/2)*(z-S(z)/(z*S(z)-1)) with S(z) = Sum_{n>=0} (2*n)!/(2^n*n!*z^(2*n+1)).
a(n) = (2*n - 1) * a(n-1) + 2 * Sum_{k=1..n} a(k-1) * a(n-k) if n>0. - Michael Somos, Jul 23 2011
a(0)=1; for n > 0, a(n) = A000698(n+2)/2 - Sum_{k=0..n-1} A000698(n+1-k)*a(k).
G.f.: 1/(1-3*x/(1-4*x/(1-5*x/(1-6*x/(1-7*x/(1-8*x/(...))))))) (continued fraction). - Philippe Deléham, Nov 20 2011
G.f.: 1/Q(0), where Q(k) = 1 - x*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Let A(x) be the g.f. of A127059 and B(x) be the g.f. of A167872. Then A(x) = (1 - 1/B(x))/x.
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - (2*k+3)*x/((2*k+2)*x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: G(0), where G(k) = 1 - x*(k+3)/(x*(k+3) - 1/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Aug 05 2013
a(n) = A115974(n)/2, see comments in A115974. See also A000698, A005411, A005412. - Robert Coquereaux, Sep 14 2014
a(n) ~ 2^(n + 3/2) * n^(n+2) / exp(n). - Vaclav Kotesovec, Jan 02 2019
G.f.: 1/(1 + x - 4*x/(1 - 3*x/(1 - 6*x/(1 - 5*x/(1 - 8*x/(1 - 7*x/(1 - ...))))))). - Peter Bala, May 30 2022

Extensions

Name clarified from Robert Coquereaux, Sep 14 2014

A127058 Triangle, read by rows, defined by: T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) for n > k >= 0, with T(n,n) = n+1.

Original entry on oeis.org

1, 2, 2, 10, 6, 3, 74, 42, 12, 4, 706, 414, 108, 20, 5, 8162, 5058, 1332, 220, 30, 6, 110410, 72486, 19908, 3260, 390, 42, 7, 1708394, 1182762, 342252, 57700, 6750, 630, 56, 8, 29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9, 576037442
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

Column 0 is A000698, the number of shellings of an n-cube, divided by 2^n n!.
Column 1 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.

Examples

			Other recurrences exist, as shown by:
column 0 = A000698: T(n,0) = (2n+1)!! - Sum_{k=1..n} (2k-1)!!*T(n-k,0);
column 1 = A115974: T(n,1) = T(n+1,0) - Sum_{k=0..n-1} T(k,1)*T(n-k,0).
Illustrate the recurrence:
T(n,k) = Sum_{j=0..n-k-1} T(j+k,k)*T(n-j,k+1) (n > k >= 0)
at column k=1:
T(2,1) = T(1,1)*T(2,2) = 2*3 = 6;
T(3,1) = T(1,1)*T(3,2) + T(2,1)*T(2,2) = 2*12 + 6*3 = 42;
T(4,1) = T(1,1)*T(4,2) + T(2,1)*T(3,2) + T(3,1)*T(2,2) = 2*108 + 6*12 + 42*3 = 414;
at column k=2:
T(3,2) = T(2,2)*T(3,3) = 3*4 = 12;
T(4,2) = T(2,2)*T(4,3) + T(3,2)*T(3,3) = 3*20 + 12*4 = 108;
T(5,2) = T(2,2)*T(5,3) + T(3,2)*T(4,3) + T(4,2)*T(3,3) = 3*220 + 12*20 + 108*4 = 1332.
Triangle begins:
         1;
         2,        2;
        10,        6,       3;
        74,       42,      12,       4;
       706,      414,     108,      20,      5;
      8162,     5058,    1332,     220,     30,     6;
    110410,    72486,   19908,    3260,    390,    42,   7;
   1708394,  1182762,  342252,   57700,   6750,   630,  56,  8;
  29752066, 21573054, 6583788, 1159700, 138150, 12474, 952, 72, 9; ...
		

Crossrefs

Columns: A000698, A115974, A127059.
Row sums: A127060.
Cf. A001147 ((2n-1)!!).

Programs

  • Mathematica
    T[n_,k_]:= If[k==n, n+1, Sum[T[j+k,k]*T[n-j,k+1], {j,0,n-k-1}]];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 03 2019 *)
  • PARI
    {T(n,k)=if(n==k,n+1,sum(j=0,n-k-1,T(j+k,k)*T(n-j,k+1)))}
    
  • Sage
    def T(n, k):
        if (k==n): return n+1
        else: return sum(T(j+k,k)*T(n-j,k+1) for j in (0..n-k-1))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 03 2019

A127060 Row sums of triangle A127058.

Original entry on oeis.org

1, 4, 19, 132, 1253, 14808, 206503, 3298552, 59220265, 1179047100, 25767347387, 613141219356, 15780105110605, 436801028784112, 12941788708753999, 408718346076189360, 13707898517284016849, 486640514520848512692
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:=T[n, k]=If[k==n, n+1, Sum[T[j+k,k]*T[n-j,k+1], {j,0,n-k-1}]];
    Table[Sum[T[n, j], {j,0,n}], {n,0,20}] (* G. C. Greubel, Jun 08 2019 *)
  • PARI
    getT(n, k, T) = if (!T[n+1,k+1], T[n+1, k+1] = sum(j=0, n-k-1, getT(j+k, k, T)*getT(n-j, k+1, T))); T[n+1, k+1];
    tabl(nn) = {my(T = matrix(nn+1, nn+1)); for (i=1, nn+1, T[i, i] = i); for (i=0, nn, for (j=0, i, T[i+1, j+1] = getT(i, j, T); ); ); T; } /* A127059 */
    lista(nn) = {my(T = tabl(nn)); vector(nn, k, vecsum(T[k, ]));}
    lista(20) \\ Michel Marcus, Jun 09 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return n+1
        else: return sum(T(j+k, k)*T(n-j, k+1) for j in (0..n-k-1))
    def a(n): return sum(T(n,j) for j in (0..n))
    [a(n) for n in (0..20)] # G. C. Greubel, Jun 08 2019

Extensions

a(17) corrected by G. C. Greubel, Jun 08 2019

A321963 Stieltjes generated from the sequence m, m+1, m+2, m+3, .... where m = 4.

Original entry on oeis.org

1, 4, 36, 444, 6636, 114084, 2194596, 46460124, 1070653356, 26650132164, 712373143716, 20355134459004, 619356569885676, 20002325474150244, 683641504802995236, 24662695086736585884, 936845038595867508396, 37388655553571504769924, 1564425694139017014501156
Offset: 0

Views

Author

Peter Luschny, Dec 26 2018

Keywords

Comments

See A321964 for the definitions.

Crossrefs

A000007 (m=0), A001147 (m=1), A000698 (m=2), A167872 (m=3), this sequence (m=4).
a(n) = A127059(n)/3.

Programs

  • Maple
    A321963List := proc(len) local S, k, m, cf, ser;
        S := [seq(k+4, k = 0..len)]: m := 1;
        for k from len by -1 to 1 do
            m := 1 - S[k]*x/m od;
        cf := 1/m:
        ser := series(cf, x, len);
        seq(coeff(ser, x, n), n = 0..len-1) end:
    A321963List(19);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == n, n + 1, Sum[T[j + k, k] T[n - j, k + 1], {j, 0, n - k - 1}]]; a[n_] := T[n + 2, 2]/3; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 22 2019, from A127059 *)

Formula

a(n) ~ 2^(n + 5/2) * n^(n+3) / (3*exp(n)). - Vaclav Kotesovec, Jan 02 2019
Showing 1-4 of 4 results.