cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127062 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube and denominator Sum_{k=1..p-1} 1/k^4 is a fourth power.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 117659, 117671, 117673, 117679, 117701, 117703, 117709, 117721, 117727, 117731, 117751, 117757, 117763, 117773
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Comments

Subsequence of A127061. - Max Alekseyev, Feb 08 2007

Crossrefs

Programs

  • Mathematica
    pdenQ[n_]:=Module[{c=Denominator[Table[Sum[1/k^i,{k,n-1}],{i,2,4}]]}, AllTrue[{ Surd[c[[1]],2], Surd[c[[2]],3],Surd[c[[3]],4]},IntegerQ]]; Select[Prime[Range[12000]],pdenQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 06 2015 *)
  • PARI
    lista(nn) = {forprime(p = 2, nn, if (issquare(denominator(sum(k=1, p-1, 1/k^2))) && ispower(denominator(sum(k=1, p-1, 1/k^3)),3) && ispower(denominator(sum(k=1, p-1, 1/k^4)),4), print1(p, ", ")););} \\ Michel Marcus, Nov 05 2013

Formula

Intersection of A127042, A127046 and A127047. - Michel Marcus, Nov 05 2013

Extensions

More terms from Max Alekseyev, Feb 08 2007