cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127193 A 9th-order Fibonacci sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8185, 16353, 32673, 65281, 130433, 260609, 520705, 1040385, 2078721, 4153345, 8298505, 16580657, 33128641, 66192001, 132253569, 264246529, 527972353, 1054904321
Offset: 1

Views

Author

Luis A Restrepo (luisiii(AT)mac.com), Jan 07 2007

Keywords

Comments

9-Bonacci constant = 1.99802947...

Crossrefs

Cf. Fibonacci numbers A000045, tribonacci numbers A000213, tetranacci numbers A000288, pentanacci numbers A000322, hexanacci numbers A000383, 7th-order Fibonacci numbers A060455, octanacci numbers, A123526.

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1},40] (* Ray Chandler, Aug 01 2015 *)
    With[{c=Table[1,{9}]},LinearRecurrence[c,c,40]] (* Harvey P. Dale, Apr 08 2016 *)
  • PARI
    x='x+O('x^50); Vec((x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9+7*x^10)/(1 -2*x+ x^10)) \\ G. C. Greubel, Jul 28 2017

Formula

For a(1)=...=a(9)=1, a(10)=9, a(n)= 2*a(n-1) - a(n-10). - Vincenzo Librandi, Dec 20 2010
G.f.: x*(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8+7*x^9)/(1-2*x+x^10). - G. C. Greubel, Jul 28 2017