cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127212 a(n) = 5^n*Lucas(n), where Lucas = A000204.

Original entry on oeis.org

5, 75, 500, 4375, 34375, 281250, 2265625, 18359375, 148437500, 1201171875, 9716796875, 78613281250, 635986328125, 5145263671875, 41625976562500, 336761474609375, 2724456787109375, 22041320800781250, 178318023681640625
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [5^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[5^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}]
    Table[5^n*LucasL[n], {n,1,50}] (* G. C. Greubel, Dec 18 2017 *)
    LinearRecurrence[{5,25},{5,75},20] (* Harvey P. Dale, Jan 11 2024 *)
  • PARI
    x='x+O('x^30); Vec(-5*x*(10*x+1)/(25*x^2+5*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({5,5},{5,0})^n].
a(n) = 5^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 5*a(n-1) + 25*a(n-2).
G.f.: -5*x*(10*x+1)/(25*x^2+5*x-1). (End)