cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A127211 a(n) = 4^n*Lucas(n), where Lucas = A000032.

Original entry on oeis.org

2, 4, 48, 256, 1792, 11264, 73728, 475136, 3080192, 19922944, 128974848, 834666496, 5402263552, 34963718144, 226291089408, 1464583847936, 9478992822272, 61349312856064, 397061136580608, 2569833552019456, 16632312393367552, 107646586405781504, 696703343917006848
Offset: 0

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [4^n*Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 18 2017
  • Maple
    a:= n-> 4^n*(<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]:
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    Table[4^n Tr[MatrixPower[{{1, 1}, {1, 0}}, n]], {n, 0, 20}]
    Table[4^n*LucasL[n], {n, 0, 50}] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    my(x='x + O('x^30)); Vec(-4*x*(8*x+1)/(16*x^2+4*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({4,4},{4,0})^n].
a(n) = 4^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 4*a(n-1) + 16*a(n-2).
G.f.: 2*x*(2*x-1)/(16*x^2+4*x-1). (End)
From Peter Luschny, Apr 15 2024: (Start)
a(n) = 2^n*((1 - sqrt(5))^n + (1 + sqrt(5))^n).
a(n) = 4^n*(Fibonacci(n+1) + Fibonacci(n-1)). (End)
a(n) = 2^n*A087131(n). - Michel Marcus, Apr 15 2024

Extensions

a(0)=2 prepended by Alois P. Heinz, Apr 15 2024

A127210 a(n) = 3^n*Lucas(n), where Lucas = A000204.

Original entry on oeis.org

3, 27, 108, 567, 2673, 13122, 63423, 308367, 1495908, 7263027, 35252253, 171124002, 830642283, 4032042867, 19571909148, 95004113247, 461159522073, 2238515585442, 10865982454983, 52744587633927, 256027604996628, 1242784103695227, 6032600756055333, 29282859201423042
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [3^n*Lucas(n): n in [1..30]]; // Vincenzo Librandi, Aug 07 2015
  • Mathematica
    Table[3^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}]
    Table[3^n LucasL[n], {n, 25}] (* Vincenzo Librandi, Aug 07 2015 *)
  • PARI
    lucas(n) = fibonacci(n-1) + fibonacci(n+1);
    vector(30, n, 3^n*lucas(n)) \\ Michel Marcus, Aug 07 2015
    

Formula

a(n) = Trace of matrix [({3,3},{3,0})^n] = 3^n * Trace of matrix [({1,1},{1,0})^n].
From R. J. Mathar, Oct 27 2008: (Start)
a(n) = 3*a(n-1) + 9*a(n-2).
G.f.: 3*x*(1 + 6*x)/(1 - 3*x - 9*x^2).
a(n) = 3*A099012(n) +18*A099012(n-1). (End)

Extensions

More terms from Michel Marcus, Aug 07 2015

A127213 a(n) = 6^n*Lucas(n), where Lucas = A000204.

Original entry on oeis.org

6, 108, 864, 9072, 85536, 839808, 8118144, 78941952, 765904896, 7437339648, 72196614144, 700923912192, 6804621582336, 66060990332928, 641332318961664, 6226189565755392, 60445100877152256, 586813429630107648
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    [6^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[6^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}]
    Table[6^n*LucasL[n], {n,1,50}] (* G. C. Greubel, Dec 18 2017 *)
    LinearRecurrence[{6,36},{6,108},20] (* Harvey P. Dale, Jan 20 2024 *)
  • PARI
    x='x+O('x^30); Vec(-6*x*(12*x+1)/(36*x^2+6*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({6,6},{6,0})^n].
a(n) = 6^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 6*a(n-1) + 36*a(n-2).
G.f.: -6*x*(12*x+1)/(36*x^2+6*x-1). (End)

A127214 a(n) = 2^n*tribonacci(n) or (2^n)*A001644(n+1).

Original entry on oeis.org

2, 12, 56, 176, 672, 2496, 9088, 33536, 123392, 453632, 1669120, 6139904, 22585344, 83083264, 305627136, 1124270080, 4135714816, 15213527040, 55964073984, 205867974656, 757300461568, 2785785413632, 10247716470784, 37696978288640, 138671105769472
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,12,56]; [n le 3 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8}, {2, 12, 56}, 50] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({2,2,2},{2,0,0},{0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1},{1,0,0},{0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3).
G.f.: -2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127216 a(n) = 2^n*tetranacci(n) or (2^n)*A001648(n).

Original entry on oeis.org

2, 12, 56, 240, 832, 3264, 12672, 48896, 187904, 724992, 2795520, 10776576, 41541632, 160153600, 617414656, 2380201984, 9175957504, 35374497792, 136373075968, 525735034880, 2026773676032, 7813464064000, 30121872326656, 116123550875648, 447670682386432
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Examples

			a(8) = (2^8) * A001648(8) = 256 * 191  = 48896. - _Indranil Ghosh_, Feb 09 2017
		

Crossrefs

Programs

  • Magma
    I:=[2,12,56,240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8, 16}, {2, 12, 56, 240}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(32*x^3+12*x^2+4*x+1)/(16*x^4 +8*x^3 +4*x^2 +2*x -1)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({2,2,2,2},{2,0,0,0},{0,2,0,0},{0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3) + 16*a(n-4).
G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127215 a(n) = 3^n*tribonacci(n) or (3^n)*A001644(n+1).

Original entry on oeis.org

3, 27, 189, 891, 5103, 28431, 155277, 859491, 4743603, 26158707, 144374805, 796630059, 4395548511, 24254435799, 133832255589, 738466498755, 4074759563139, 22483948079115, 124063275771981, 684563868232731, 3777327684782127, 20842766314284447
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,27,189]; [n le 3 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27}, {3, 27, 189}, 50] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(27*x^2+6*x+1)/(27*x^3+9*x^2+3*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({3,3,3},{3,0,0},{0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1},{1,0,0},{0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3).
G.f.: -3*x*(27*x^2+6*x+1)/(27*x^3+9*x^2+3*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127220 a(n) = 3^n*tetranacci(n) or (2^n)*A001648(n).

Original entry on oeis.org

3, 27, 189, 1215, 6318, 37179, 216513, 1253151, 7223661, 41806692, 241805655, 1398221271, 8084811933, 46753521975, 270362105694, 1563413859999, 9040715391141, 52279683047127, 302316992442837, 1748203962973380, 10109314209860523, 58458991419115875
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215]; [n le 4 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81}, {3, 27, 189, 1215}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(108*x^3 +27*x^2 +6*x +1)/(81*x^4 +27*x^3 +9*x^2 +3*x -1)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3},{3,0,0,0},{0,3,0,0},{0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3) + 81*a(n-4).
G.f.: -3*x*(108*x^3+27*x^2+6*x+1)/(81*x^4+27*x^3+9*x^2+3*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127221 a(n) = 2^n*pentanacci(n) or (2^n)*A023424(n-1).

Original entry on oeis.org

2, 12, 56, 240, 992, 3648, 14464, 57088, 224768, 883712, 3471360, 13651968, 53682176, 211075072, 829915136, 3263102976, 12830244864, 50447253504, 198353354752, 779904614400, 3066503888896, 12057176965120, 47407572189184, 186401664532480, 732912043425792
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2, 12, 56, 240, 992]; [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4) + 32*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8, 16, 32}, {2, 12, 56, 240, 992}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({2,2,2,2,2},{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 2*a(n-1)+4*a(n-2)+8*a(n-3)+16*a(n-4)+32*a(n-5). - Colin Barker, Sep 02 2013

Extensions

Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A127222 a(n) = 3^n*pentanacci(n) or (3^n)*A023424(n-1).

Original entry on oeis.org

3, 27, 189, 1215, 7533, 41553, 247131, 1463103, 8640837, 50959287, 300264165, 1771292853, 10447598619, 61618989627, 363414767589, 2143339285311, 12641143135581, 74555586323649, 439717218548643, 2593383067853775, 15295369041550269, 90209719910309895
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215, 7533]; [n le 5 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4) + 243*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81, 243}, {3, 27, 189, 1215, 7533}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3,3},{3,0,0,0,0},{0,3,0,0,0},{0,0,3,0,0},{0,0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 3*a(n-1)+9*a(n-2)+27*a(n-3)+81*a(n-4)+243*a(n-5). - Colin Barker, Sep 02 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013
Showing 1-9 of 9 results.