cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127345 a(n) = pq + pr + qr with p = prime(n), q = prime(n+1), and r = prime(n+2).

Original entry on oeis.org

31, 71, 167, 311, 551, 791, 1151, 1655, 2279, 3119, 3935, 4871, 5711, 6791, 8391, 9959, 11639, 13175, 14831, 16559, 18383, 20975, 24071, 27419, 30191, 32231, 33911, 36071, 40511, 45791, 51983, 55199, 60167, 64199, 69599, 73911, 79031, 84311
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2007

Keywords

Comments

a(n) = coefficient of x^1 of the polynomial Product_{j=0..2} (x-prime(n+j)) of degree 3; the roots of this polynomial are prime(n), ..., prime(n+2); cf. Vieta's formulas.
Arithmetic derivative (see A003415) of prime(n)*prime(n+1)*prime(n+2). [Giorgio Balzarotti, May 26 2011]

Crossrefs

Programs

  • Mathematica
    Table[Prime[n]*Prime[n+1] + Prime[n]*Prime[n+2] + Prime[n+1]*Prime[n+2], {n, 100}]
    Total[Times@@@Subsets[#,{2}]]&/@Partition[Prime[Range[40]],3,1] (* Harvey P. Dale, Sep 11 2017 *)
  • PARI
    {m=38;k=2;for(n=1,m,print1(sum(i=n,n+k-1,sum(j=i+1,n+k,prime(i)*prime(j))),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    {m=38;k=2;for(n=1,m,print1(polcoeff(prod(j=0,k,(x-prime(n+j))),1),","))} \\ Klaus Brockhaus, Jan 21 2007
    
  • PARI
    p=2;q=3;forprime(r=5,1e3,print1(p*q+p*r+q*r", ");p=q;q=r) \\ Charles R Greathouse IV, Jan 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 21 2007