cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127442 Triangle read by rows: row n consists of 1 followed by initial n-1 terms of A127440.

Original entry on oeis.org

1, 1, -2, 1, -2, 0, 1, -2, 0, 1, 1, -2, 0, 1, -1, 1, -2, 0, 1, -1, 2, 1, -2, 0, 1, -1, 2, -2, 1, -2, 0, 1, -1, 2, -2, 1, 1, -2, 0, 1, -1, 2, -2, 1, 0, 1, -2, 0, 1, -1, 2, -2, 1, 0, 1, 1, -2, 0, 1, -1, 2, -2, 1, 0, 1, -2, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 14 2007

Keywords

Comments

Row sums give A008683.

Examples

			Triangle begins:
1
1 -2,
1 -2, 0,
1 -2, 0, 1,
1 -2, 0, 1, -1,
1 -2, 0, 1, -1, 2,
1 -2, 0, 1, -1, 2, -2,
1 -2, 0, 1, -1, 2, -2, 1,
1 -2, 0, 1, -1, 2, -2, 1, 0,
1 -2, 0, 1, -1, 2, -2, 1, 0, 1,
1 -2, 0, 1, -1, 2, -2, 1, 0, 1, -2,
		

Crossrefs

Cf. A127440 (first differences of mu(n), A008683).
Cf. A008683.

Extensions

One term corrected by T. D. Noe, Feb 08 2007
Edited, corrected and extended by N. J. A. Sloane, Mar 01 2007

A248211 First differences of omega(n), the number of distinct prime factors function (A001221).

Original entry on oeis.org

1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 0, 1, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 2, -2, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 2, -2, 1, 0, -1, 1, 1, -2, 1, 0, 1, -2, 1, -1, 1, 0, 0, 0, 1, -2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 04 2014

Keywords

Comments

First instance of abs(a(n)) > 2 is for n = 210. - Alonso del Arte, Oct 05 2014

Crossrefs

Cf. A001221 (omega).
Cf. A053222: first differences of sigma(n) = A000203.
Cf. A076191: first differences of bigomega(n) = A001222.
Cf. A127440: first differences of mobius(n) = A008683.

Programs

  • Maple
    with(numtheory): A248211:=n->nops(factorset(n+1))-nops(factorset(n)): seq(A248211(n), n=1..100);
  • Mathematica
    Table[PrimeNu[n + 1] - PrimeNu[n], {n, 100}] (* Hurt *)
    Differences[PrimeNu[Range[100]]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    a(n) = omega(n+1) - omega(n); \\ Michel Marcus, Dec 29 2022

Formula

a(n) = omega(n+1) - omega(n) = A001221(n+1) - A001221(n).
G.f.: (1 - x)*Sum_{k>=1} x^(prime(k)-1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 15 2017
Showing 1-2 of 2 results.