A127548 O.g.f.: Sum_{n>=0} n!*(x/(1+x)^2)^n.
1, 1, 0, 1, 4, 19, 112, 771, 6088, 54213, 537392, 5867925, 69975308, 904788263, 12607819040, 188341689287, 3002539594128, 50878366664393, 913161208490016, 17304836525709097, 345279674107957524, 7235298537356113339
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..450
Programs
-
Maple
A127548 := proc(n) if n = 0 then 1 ; else add(factorial(s)*(-1)^(n-s)*binomial(s+n-1,2*s-1),s=1..n) ; fi ; end: for n from 0 to 20 do printf("%d,",A127548(n)) ; od ; # R. J. Mathar, Jul 13 2007
-
Mathematica
nn = 21; CoefficientList[Series[Sum[n!*(x/(1 + x)^2)^n, {n, 0, nn}], {x, 0, nn}], x] (* Michael De Vlieger, Sep 04 2016 *)
-
Python
import math def binomial(n,m): a=1 for k in range(n-m+1,n+1): a *= k return a//math.factorial(m) def A127548(n): if n == 0: return 1 a=0 for s in range(1,n+1): a += (-1)**(n-s)*binomial(s+n-1,2*s-1)*math.factorial(s) return a for n in range(30): print(A127548(n)) # R. J. Mathar, Oct 20 2009
Formula
a(n) = Sum_{s=1..n} (-1)^(n-s)*s!*C(s+n-1,2s-1) if n>=1, where C(a,b)=binomial(a,b). - R. J. Mathar, Jul 13 2007
G.f.: Q(0) where Q(k) = 1 + (2*k + 1)*x/( (1+x)^2- 2*x*(1+x)^2*(k+1)/(2*x*(k+1) + (1+x)^2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 08 2013
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Oct 31 2017
Extensions
More terms from R. J. Mathar, Jul 13 2007
More terms from R. J. Mathar, Oct 20 2009
Comments