cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127717 Triangle read by rows. T(n, k) = k * binomial(n + 1, k + 1), for 1 <= k <= n.

Original entry on oeis.org

1, 3, 2, 6, 8, 3, 10, 20, 15, 4, 15, 40, 45, 24, 5, 21, 70, 105, 84, 35, 6, 28, 112, 210, 224, 140, 48, 7, 36, 168, 378, 504, 420, 216, 63, 8, 45, 240, 630, 1008, 1050, 720, 315, 80, 9, 55, 330, 990, 1848, 2310, 1980, 1155, 440, 99, 10
Offset: 1

Views

Author

Gary W. Adamson, Jan 25 2007

Keywords

Comments

T(n,k) is the sum of the greatest element in each size k subset of {1,2,...,n}. - Geoffrey Critzer, Oct 17 2009
Reversed unsigned rows of A055137 with the diagonal and first subdiagonal removed. - Tom Copeland, Nov 04 2012
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-1)^0 + A_1*(x-1)^1 + A_2*(x-1)^2 + ... + A_n*(x-1)^n. This sequence gives A_0, ..., A_n as the entries in the n-th row of this triangle, starting at n = 0. - Derek Orr, Oct 30 2014

Examples

			First few rows of the triangle:
    [1    2    3     4     5    6    7     8    9]
[1]  1;
[2]  3,   2;
[3]  6,   8,   3;
[4] 10,  20,  15,    4;
[5] 15,  40,  45,   24,    5;
[6] 21,  70, 105,   84,   35,    6;
[7] 28, 112, 210,  224,  140,   48,    7;
[8] 36, 168, 378,  504,  420,  216,   63,   8;
[9] 45, 240, 630, 1008, 1050,  720,  315,  80,  9;
  ...
T(4, 3) = 15 because the size 3 subsets of {1, 2, 3, 4} are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Adding the largest element from each subset we get 3 + 4 + 4 + 4 = 15. - _Geoffrey Critzer_, Oct 17 2009
		

Crossrefs

Programs

  • Maple
    # Assuming (1,1)-based triangle:
    T := (n, k) -> k*binomial(n+1, k+1):
    seq(seq(T(n, k), k = 1..n), n = 1..9);
    # Assuming (0,0)-based triangle:
    gf := 1/((1 - x)*(1 - x - x*y)^2): ser := series(gf, x, 11):
    seq(seq(coeff(coeff(ser, x, n), y, k), k=0..n), n=0..9); # Peter Luschny, Jan 07 2023
  • Mathematica
    Table[Table[Sum[Binomial[i - 1, k - 1]*i, {i, k, n}], {k, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Oct 17 2009 *)
  • PARI
    T(n,k) = k*sum(i=0,n-k,binomial(i+k,k))
    for(n=1,15,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Oct 30 2014

Formula

A002260 * A007318 (Pascal's Triangle), where A002260 = the matrix [1; 1,2; 1,2,3,...].
T(n,k) = Sum_{i=k..n} binomial(i-1, k-1)*i. - Geoffrey Critzer, Oct 17 2009
Row sums = A000337: (1, 5, 17, 49, 129, ...) A007318 * A002260 = A127718.
From Geoffrey Critzer, Oct 18 2009: (Start)
T(n,k) = k*binomial(n+1, k+1).
Recurrence for column k: a(n) = a(n-1) + n*binomial(n-1, k-1) = a(n-1) + k*binomial(n, k).
O.g.f. for column k: k*x^k/(1-x)^(k+2). (End)
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+2-k, k+2-i). - Mircea Merca, Apr 11 2012
G.f.: 1/((1 - x)*(1 - x - x*y)^2), assuming the triangle (0,0)-based. - Vladimir Kruchinin, Jan 07 2023

Extensions

a(8) = 20, corrected by Geoffrey Critzer, Oct 17 2009
More terms from Derek Orr, Oct 30 2014
Offset set to 1 and new name using a formula of Geoffrey Critzer by Peter Luschny, Jan 07 2023