A127717 Triangle read by rows. T(n, k) = k * binomial(n + 1, k + 1), for 1 <= k <= n.
1, 3, 2, 6, 8, 3, 10, 20, 15, 4, 15, 40, 45, 24, 5, 21, 70, 105, 84, 35, 6, 28, 112, 210, 224, 140, 48, 7, 36, 168, 378, 504, 420, 216, 63, 8, 45, 240, 630, 1008, 1050, 720, 315, 80, 9, 55, 330, 990, 1848, 2310, 1980, 1155, 440, 99, 10
Offset: 1
Examples
First few rows of the triangle: [1 2 3 4 5 6 7 8 9] [1] 1; [2] 3, 2; [3] 6, 8, 3; [4] 10, 20, 15, 4; [5] 15, 40, 45, 24, 5; [6] 21, 70, 105, 84, 35, 6; [7] 28, 112, 210, 224, 140, 48, 7; [8] 36, 168, 378, 504, 420, 216, 63, 8; [9] 45, 240, 630, 1008, 1050, 720, 315, 80, 9; ... T(4, 3) = 15 because the size 3 subsets of {1, 2, 3, 4} are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Adding the largest element from each subset we get 3 + 4 + 4 + 4 = 15. - _Geoffrey Critzer_, Oct 17 2009
Links
- Cyann Donnot, Antoine Genitrini, Yassine Herida, Unranking Combinations Lexicographically: an efficient new strategy compared with others, hal-02462764 [cs] / [cs.DS] / [math] / [math.CO], 2020.
- Antoine Genitrini and Martin Pépin, Lexicographic unranking of combinations revisited, hal-03040740v2 [cs.DM] [cs.DS] [math.CO], 2020.
Programs
-
Maple
# Assuming (1,1)-based triangle: T := (n, k) -> k*binomial(n+1, k+1): seq(seq(T(n, k), k = 1..n), n = 1..9); # Assuming (0,0)-based triangle: gf := 1/((1 - x)*(1 - x - x*y)^2): ser := series(gf, x, 11): seq(seq(coeff(coeff(ser, x, n), y, k), k=0..n), n=0..9); # Peter Luschny, Jan 07 2023
-
Mathematica
Table[Table[Sum[Binomial[i - 1, k - 1]*i, {i, k, n}], {k, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Oct 17 2009 *)
-
PARI
T(n,k) = k*sum(i=0,n-k,binomial(i+k,k)) for(n=1,15,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Oct 30 2014
Formula
T(n,k) = Sum_{i=k..n} binomial(i-1, k-1)*i. - Geoffrey Critzer, Oct 17 2009
From Geoffrey Critzer, Oct 18 2009: (Start)
T(n,k) = k*binomial(n+1, k+1).
Recurrence for column k: a(n) = a(n-1) + n*binomial(n-1, k-1) = a(n-1) + k*binomial(n, k).
O.g.f. for column k: k*x^k/(1-x)^(k+2). (End)
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+2-k, k+2-i). - Mircea Merca, Apr 11 2012
G.f.: 1/((1 - x)*(1 - x - x*y)^2), assuming the triangle (0,0)-based. - Vladimir Kruchinin, Jan 07 2023
Extensions
a(8) = 20, corrected by Geoffrey Critzer, Oct 17 2009
More terms from Derek Orr, Oct 30 2014
Offset set to 1 and new name using a formula of Geoffrey Critzer by Peter Luschny, Jan 07 2023
Comments