A127728 Sum of squared coefficients of q in the q-factorials.
1, 1, 2, 10, 106, 1930, 53612, 2108560, 111482424, 7625997280, 655331699940, 69110082376388, 8775534280695310, 1320693932817784342, 232459627389638257316, 47311901973588298051380, 11025565860152700884475938, 2916827988004938784779055448
Offset: 0
Keywords
Examples
Definition of q-factorial of n: faq(n) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0)=1; faq(4) = 1*(1 + q)*(1 + q + q^2)*(1 + q + q^2 + q^3) = 1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6; then a(n) is the sum of squared coefficients of q: a(4) = 1^2 + 3^2 + 5^2 + 6^2 + 5^2 + 3^2 + 1^2 = 106.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..100
- Eric Weisstein's World of Mathematics, q-Factorial.
Programs
-
Mathematica
Table[Total[ CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n - 1}]], x]^2], {n, 0, 15}] (* Geoffrey Critzer, May 15 2010 *)
-
PARI
{a(n)=local(faq_n=if(n==0,1,prod(k=1,n,(1-q^k)/(1-q)))); sum(k=0,n*(n-1)/2,polcoeff(faq_n,k,q)^2)}
-
PARI
a(n) = norml2(Vec(prod(k=1, n, (1-q^k)/(1-q)))); \\ Michel Marcus, Jan 18 2025
Formula
Conjecture: a(n) ~ 6 * sqrt(Pi) * n^(2*n - 1/2) / exp(2*n). - Vaclav Kotesovec, Oct 22 2020
a(n) = Sum_{k>=0} A008302(n,k)^2. - R. J. Mathar, Jan 06 2022
Comments