A047653
Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).
Original entry on oeis.org
1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0
- T. D. Noe, Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 0..1669 (terms < 10^1000, first 201 terms from T. D. Noe, next 200 terms from Alois P. Heinz)
- Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
- Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- R. P. Stanley, Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic and Discrete Methods 1 (1980), 168-184.
For median instead of mean we have
A079309(n) + 1.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
-
f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0);
# second Maple program:
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
nmax = 26; d = {1}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
-
{a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010
A128083
Sum of squared coefficients of q in the q-analog of the odd double factorials.
Original entry on oeis.org
1, 1, 3, 37, 1159, 66953, 6158021, 825889193, 152147002939, 36866098462221, 11368538145120143, 4347671960639941039, 2019396728684584627337, 1119792551093682455434255, 730724550040451849614251167
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)^2))}
A129276
Triangle, read by rows, where T(n,k) is the coefficient of q^(nk-k) in the squared q-factorial of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 8, 8, 1, 1, 42, 106, 42, 1, 1, 241, 1558, 1558, 241, 1, 1, 1444, 23589, 53612, 23589, 1444, 1, 1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1, 1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1
Offset: 0
Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 4 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, (42), 71, 96, (106), 96, 71, (42), 19, 6, (1)],
where the terms enclosed in parenthesis form row 4.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 8, 8, 1;
1, 42, 106, 42, 1;
1, 241, 1558, 1558, 241, 1;
1, 1444, 23589, 53612, 23589, 1444, 1;
1, 8867, 360499, 1747433, 1747433, 360499, 8867, 1;
1, 55320, 5530445, 54794622, 111482424, 54794622, 5530445, 55320, 1; ...
-
faq[n_, q_] := Product[(1-q^k)/(1-q), {k, 1, n}]; t[0, 0] = t[1, 0] = t[1, 1] = 1; t[n_, k_] := SeriesCoefficient[faq[n, q]^2, {q, 0, (n-1)*k}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 26 2013 *)
-
T(n,k)=if(n==0,1,polcoeff(prod(i=1,n,(1-x^i)/(1-x))^2,(n-1)*k))
A128087
Sum of squared coefficients of q in the q-analog of the even double factorials.
Original entry on oeis.org
1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}
A129274
Triangle, read by rows, where T(n,k) is the coefficient of q^(nk+k) in the squared q-factorial of n+1.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 71, 71, 1, 1, 474, 1930, 474, 1, 1, 3103, 40096, 40096, 3103, 1, 1, 20190, 739929, 2108560, 739929, 20190, 1, 1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1, 1, 853176, 215022825, 3286786158, 7625997280
Offset: 0
Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 3 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, 42, (71), 96, 106, 96, (71), 42, 19, 6, (1)],
where the terms enclosed in parenthesis form row 3.
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 71, 71, 1;
1, 474, 1930, 474, 1;
1, 3103, 40096, 40096, 3103, 1;
1, 20190, 739929, 2108560, 739929, 20190, 1;
1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1;
1, 853176, 215022825, 3286786158, 7625997280, 3286786158, 215022825, 853176, 1; ...
-
T(n,k)=polcoeff(prod(i=1,n+1,(1-x^i)/(1-x))^2,(n+1)*k)
A380274
Sum of cubes of coefficients of q in the q-factorials.
Original entry on oeis.org
1, 1, 2, 18, 522, 34986, 4524240, 1003172616, 351349509504, 182985164256000, 135303274820730372, 136936922140937021688, 184146557651652262521738, 321051865325352021467189658, 710866983641078174204266934736, 1964068265459581480020247325821224
Offset: 0
a(4) = 1^3 + 3^3 + 5^3 + 6^3 + 5^3 + 3^3 + 1^3 = 522.
-
Table[Total[CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n-1}]], x]^3], {n, 0, 15}]
-
a(n) = my(v=Vec(prod(k=1, n, (1-q^k)/(1-q)))); sum(i=1, #v, v[i]^3); \\ Michel Marcus, Jan 18 2025
A380275
Sum of the fourth powers of the coefficients of q in the q-factorials.
Original entry on oeis.org
1, 1, 2, 34, 2710, 669142, 403186412, 504370709488, 1170803949124848, 4644277674894466168, 29557755573424568318844, 287158619888775996039794756, 4090368591132420991019182924018, 82628355729998755756059701468470738, 2301817961412922763844330401786521588244
Offset: 0
a(4) = 1^4 + 3^4 + 5^4 + 6^4 + 5^4 + 3^4 + 1^4 = 2710.
-
Table[Total[CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n-1}]], x]^4], {n, 0, 15}]
-
a(n) = my(v=Vec(prod(k=1, n, (1-q^k)/(1-q)))); sum(i=1, #v, v[i]^4); \\ Michel Marcus, Jan 18 2025
Showing 1-7 of 7 results.
Comments