cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127728 Sum of squared coefficients of q in the q-factorials.

Original entry on oeis.org

1, 1, 2, 10, 106, 1930, 53612, 2108560, 111482424, 7625997280, 655331699940, 69110082376388, 8775534280695310, 1320693932817784342, 232459627389638257316, 47311901973588298051380, 11025565860152700884475938, 2916827988004938784779055448
Offset: 0

Views

Author

Paul D. Hanna, Jan 25 2007

Keywords

Comments

Two n-permutations are randomly selected from S_n with replacement. a(n)/(n!)^2 is the probability that they will have the same number of inversions. - Geoffrey Critzer, May 15 2010

Examples

			Definition of q-factorial of n:
faq(n) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0)=1;
faq(4) = 1*(1 + q)*(1 + q + q^2)*(1 + q + q^2 + q^3) = 1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6;
then a(n) is the sum of squared coefficients of q:
a(4) = 1^2 + 3^2 + 5^2 + 6^2 + 5^2 + 3^2 + 1^2 = 106.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[ CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n - 1}]], x]^2], {n, 0, 15}] (* Geoffrey Critzer, May 15 2010 *)
  • PARI
    {a(n)=local(faq_n=if(n==0,1,prod(k=1,n,(1-q^k)/(1-q)))); sum(k=0,n*(n-1)/2,polcoeff(faq_n,k,q)^2)}
    
  • PARI
    a(n) = norml2(Vec(prod(k=1, n, (1-q^k)/(1-q)))); \\ Michel Marcus, Jan 18 2025

Formula

Conjecture: a(n) ~ 6 * sqrt(Pi) * n^(2*n - 1/2) / exp(2*n). - Vaclav Kotesovec, Oct 22 2020
a(n) = Sum_{k>=0} A008302(n,k)^2. - R. J. Mathar, Jan 06 2022

A380275 Sum of the fourth powers of the coefficients of q in the q-factorials.

Original entry on oeis.org

1, 1, 2, 34, 2710, 669142, 403186412, 504370709488, 1170803949124848, 4644277674894466168, 29557755573424568318844, 287158619888775996039794756, 4090368591132420991019182924018, 82628355729998755756059701468470738, 2301817961412922763844330401786521588244
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2025

Keywords

Comments

Conjecture: In general, sum of the k-th powers of the coefficients of q in the q-factorials is asymptotic to 2^((k-1)/2) * 3^(k-1) * n!^k / (sqrt(k) * Pi^((k-1)/2) * n^(3*(k-1)/2)).

Examples

			a(4) = 1^4 + 3^4 + 5^4 + 6^4 + 5^4 + 3^4 + 1^4 = 2710.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n-1}]], x]^4], {n, 0, 15}]
  • PARI
    a(n) = my(v=Vec(prod(k=1, n, (1-q^k)/(1-q)))); sum(i=1, #v, v[i]^4); \\ Michel Marcus, Jan 18 2025

Formula

a(n) = Sum_{k>=0} A008302(n,k)^4.
Conjecture: a(n) ~ 27*sqrt(2) * n!^4 / (Pi^(3/2) * n^(9/2)).
Showing 1-2 of 2 results.