cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128080 Triangle, read by rows of n(n-1)+1 terms, of coefficients of q in the q-analog of the odd double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 14, 15, 14, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 45, 60, 74, 86, 94, 97, 94, 86, 74, 60, 45, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 110, 170, 244, 330, 424, 521, 614, 696, 760, 801, 815, 801, 760, 696, 614, 521, 424, 330, 244, 170
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128084 for the triangle of coefficients of q in the q-analog of the even double factorials.

Examples

			Triangle begins:
  1;
  1;
  1,1,1;
  1,2,3,3,3,2,1;
  1,3,6,9,12,14,15,14,12,9,6,3,1;
  1,4,10,19,31,45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
  ...
		

Crossrefs

Cf. A001147 (row sums); A128081 (central terms), A128082 (diagonal), A128083 (row squared sums); A128084.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..6);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    Catenate@Table[CoefficientList[Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q], {n, 0, 6}] (* Vladimir Reshetnikov, Sep 22 2021 *)
    T[n_] := If[n == 0, {1}, Product[(1 - q^(2 j - 1))/(1 - q), {j, 1, n}] + O[q]^(n (n + 1)) // CoefficientList[#, q]&];
    Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n-1),0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)))
    for(n=0,8,for(k=0,n*(n-1),print1(T(n,k),", "));print(""))

Formula

The row sums are A001147, the odd double factorial numbers (2n-1)!!.

A128087 Sum of squared coefficients of q in the q-analog of the even double factorials.

Original entry on oeis.org

1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128083 for sum of squared coefficients of q in the q-analog of the odd double factorials. Also, A127728 is the sum of squared coefficients of q in the q-factorials.

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128085 (central terms), A128086 (diagonal); A127728.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}

A350307 a(n) is the constant term in the expansion of Product_{j=1..n} (Sum_{k=-j..j} x^k)^n.

Original entry on oeis.org

1, 1, 37, 100683, 42935363305, 4440604747662968975, 161247684066768055445081543753, 2819198261291991623302749353791096334609249, 31233334332507494719367656927521237896029724037781845363309
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2021

Keywords

Comments

a(n) is the coefficient of x^(n^2 * (n+1)/2) in Product_{j=0..n} (Sum_{k=0..2*j} x^k)^n.

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[Sum[x^k, {k, -j, j}]^n, {j, 1, n}], {x, 0, 0}], x, 0]; Array[a, 9, 0] (* Amiram Eldar, Dec 24 2021 *)
  • PARI
    a(n) = polcoef(prod(j=1, n, sum(k=-j, j, x^k))^n, 0);
    
  • PARI
    a(n) = polcoef(prod(j=1, n, sum(k=0, 2*j, x^k))^n, n^2*(n+1)/2);
Showing 1-3 of 3 results.