cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A128082 A diagonal of the triangle A128080 of coefficients of q in the q-analog of the odd double factorials: a(n) = A128080(n+1,n).

Original entry on oeis.org

1, 1, 3, 9, 31, 110, 400, 1477, 5516, 20775, 78762, 300179, 1148995, 4413877, 17007798, 65707390, 254430080, 987162527, 3836843836, 14936223511, 58226118626, 227271470103, 888117198666, 3474154716353, 13603246639501, 53310945927025, 209093495360796
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Examples

			a(n) is the n-th term in the q-analog of odd double factorial (2n+1)!!, in which the coefficients of q (triangle A128080) begin:
   1;
  (1);
   1,(1),1;
   1,2,(3),3,3,2,1;
   1,3,6,(9),12,14,15,14,12,9,6,3,1;
   1,4,10,19,(31),45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128081 (central terms).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+1), q, n):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2k-1))/(1-q), {k, 1, n+1}], {q, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 31 2021 *)
  • PARI
    a(n)=if(n<1,0,polcoeff(prod(k=1,n,(1-q^(2*k-1))/(1-q)),n-1,q))

Formula

a(n+1) = A181971(2*n,n). - Reinhard Zumkeller, Jul 09 2012
a(n) ~ c * 2^(2*n) / sqrt(n), where c = QPochhammer(1/2, 1/4) / sqrt(Pi) = 0.236633772766964806372497000634617466975260409008748... - Vaclav Kotesovec, Feb 07 2023, updated Mar 17 2024

A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.
Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - Mikhail Gaichenkov, Feb 08 2023

Examples

			The row sums form A000165, the even double factorial numbers:
  [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
Triangle begins:
 1;
 1, 1;
 1, 2,  2,  2,  1;
 1, 3,  5,  7,  8,  8,   7,   5,   3,   1;
 1, 4,  9, 16, 24, 32,  39,  44,  46,  44,  39,  32,  24,  16,   9,   4,   1;
 ...
		

Crossrefs

Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).
The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858.

Programs

  • Mathematica
    t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
    for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
    
  • PARI
    row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ Andrew Howroyd, Mar 21 2025

A128081 Central coefficients of q in the q-analog of the odd double factorials: a(n) = [q^(n(n-1)/2)] Product_{j=1..n} (1-q^(2j-1))/(1-q).

Original entry on oeis.org

1, 1, 1, 3, 15, 97, 815, 8447, 104099, 1487477, 24188525, 441170745, 8920418105, 198066401671, 4791181863221, 125421804399845, 3532750812110925, 106538929613501939, 3425126166609830467, 116938867144129019137, 4225543021235970185429, 161113285522023566327031
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Examples

			a(n) is the central term of the q-analog of odd double factorials, in which the coefficients of q (triangle A128080) begin:
   n=0: (1);
   n=1: (1);
   n=2: 1,(1),1;
   n=3: 1,2,3,(3),3,2,1;
   n=4: 1,3,6,9,12,14,(15),14,12,9,6,3,1;
   n=5: 1,4,10,19,31,45,60,74,86,94,(97),94,86,74,60,45,31,19,10,4,1;
   n=6: 1,5,15,34,65,110,170,244,330,424,521,614,696,760,801,(815),...;
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128082 (diagonal).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n), q, n*(n-1)/2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_Integer] := a[n] = Coefficient[Expand@Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q, n (n - 1)/2];
    Table[a[n], {n, 0, 21}] (* Vladimir Reshetnikov, Sep 22 2021 *)
  • PARI
    a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k-1))/(1-q)),n*(n-1)/2,q))

Formula

a(n) ~ 3 * 2^n * n^(n - 3/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Feb 07 2023

A128086 A diagonal of the triangle A128084 of coefficients of q in the q-analog of the even double factorials: a(n) = A128084(n,n).

Original entry on oeis.org

1, 1, 2, 7, 24, 86, 315, 1170, 4389, 16588, 63064, 240901, 923858, 3554747, 13716315, 53054703, 205651975, 798645126, 3106669575, 12102626404, 47210910670, 184385864445, 720920510115, 2821499709615, 11052719207369, 43333403693711
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128082 for a diagonal of the triangle A128080 of coefficients of q in the q-analog of the odd double factorials.

Examples

			a(n) is the n-th term in the q-analog of even double factorial (2n)!!, in which the coefficients of q (triangle A128084) begin:
(1);
1,(1);
1,2,(2),2,1;
1,3,5,(7),8,8,7,5,3,1;
1,4,9,16,(24),32,39,44,46,44,39,32,24,16,9,4,1;
1,5,14,30,54,(86),125,169,215,259,297,325,340,340,325,297,...;
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128085 (central terms).

Programs

  • PARI
    a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n,q))

A128593 Column 1 of triangle A128592; a(n) = coefficient of q^(n+2) in the q-analog of the odd double factorials (2n+3)!! for n>=0.

Original entry on oeis.org

1, 3, 12, 45, 170, 644, 2451, 9365, 35908, 138104, 532589, 2058782, 7975216, 30951921, 120326060, 468473348, 1826415556, 7129330988, 27860219331, 108984557708, 426730087879, 1672310507262, 6558840830680, 25742937514814, 101108341344396, 397368218111003
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128594 (column 2), A128595 (row sums).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+2), q, n+2):
    seq(a(n), n=0..30);   # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+2}], {q, 0, n+2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j-1))/(1-q)),n+2,q)}

Formula

a(n) = [q^(n+2)] Product_{j=1..n+2} (1-q^(2j-1))/(1-q) for n>=0.

A128592 Triangle, read by rows, of coefficients of q^(nk+k) in the q-analog of the odd double factorials: T(n,k) = [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 45, 97, 45, 1, 1, 170, 696, 696, 170, 1, 1, 644, 4784, 8447, 4784, 644, 1, 1, 2451, 32230, 92003, 92003, 32230, 2451, 1, 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1, 1, 35908, 1426566, 9417798, 21856230, 21856230
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 45, 97, 45, 1;
1, 170, 696, 696, 170, 1;
1, 644, 4784, 8447, 4784, 644, 1;
1, 2451, 32230, 92003, 92003, 32230, 2451, 1;
1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1;
1, 35908, 1426566, 9417798, 21856230, 21856230, 9417798, 1426566, 35908, 1;
1, 138104, 9441417, 91852376, 302951392, 441170745, 302951392, 91852376, 9441417, 138104, 1;
		

Crossrefs

Cf. A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2), A128595 (row sums); variant: A128596.

Programs

  • Mathematica
    T[n_, k_] := If[k < 0 || k > n*(n + 1), 0, If[n == 0, 1, SeriesCoefficient[Product[(1 - q^(2*j - 1))/(1 - q), {j, 1, n + 1}], {q, 0, (n + 1)*k}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022, from PARI code *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n+1),0,if(n==0,1, polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q)))

Formula

T(n,k) = A128080(n+1,nk+k) where A128080 is the triangle of coefficients of q in the q-analog of the odd double factorials.

A128083 Sum of squared coefficients of q in the q-analog of the odd double factorials.

Original entry on oeis.org

1, 1, 3, 37, 1159, 66953, 6158021, 825889193, 152147002939, 36866098462221, 11368538145120143, 4347671960639941039, 2019396728684584627337, 1119792551093682455434255, 730724550040451849614251167
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128081 (central terms), A128082 (diagonal); A127728, A128087.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)^2))}

A128594 Column 2 of triangle A128592; a(n) = coefficient of q^(2n+6) in the q-analog of the odd double factorials (2n+5)!! for n>=0.

Original entry on oeis.org

1, 12, 97, 696, 4784, 32230, 214978, 1426566, 9441417, 62405645, 412278981, 2723566163, 17996243101, 118957645301, 786700165122, 5205396517853, 34461624895701, 228274455988134, 1512920531980961, 10032446308837778
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128595 (row sums).

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+3}], {q, 0, 2n+6}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j-1))/(1-q)),2*n+6,q)}

Formula

a(n) = [q^(2n+6)] Product_{j=1..n+3} (1-q^(2j-1))/(1-q) for n>=0.

A128595 Row sums of triangle A128592.

Original entry on oeis.org

1, 2, 5, 26, 189, 1734, 19305, 253370, 3828825, 65473006, 1249937325, 26352843470, 608142583125, 15247003381854, 412685556908625, 11993673995924378, 372509404162520625, 12313505304343363126, 431620764875678503125
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

A128592(n,k) is the coefficient of q^(nk+k) in the q-analog of the odd double factorials (2n-1)!!.

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2).

Programs

  • Mathematica
    a[n_] := Sum[SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+1}], {q, 0, k(n+1)}], {k, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=sum(k=0,n,polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q))}

Formula

a(n) = Sum_{k=0..n} { [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) } for n>=0.

A161123 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k inversions (0 <= k <= n(2n-1)).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 6, 0, 9, 0, 12, 0, 14, 0, 15, 0, 14, 0, 12, 0, 9, 0, 6, 0, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 10, 0, 19, 0, 31, 0, 45, 0, 60, 0, 74, 0, 86, 0, 94, 0, 97, 0, 94, 0, 86, 0, 74, 0, 60, 0, 45, 0, 31, 0, 19
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2009

Keywords

Comments

Sum of entries in row n is (2n-1)!! = A001147(n).
Row n has 1 + 2n(n-1) entries.
Sum_{k>=0} k*T(n,k) = (2n-1)!!*n^2 = A161124(n).
A128080 is the same triangle with the 0's deleted.

Examples

			T(3,11)=3 because we have 465132, 546213, and 632541.
Triangle starts:
  1;
  0, 1;
  0, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 1, 0, 2, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1;
		

Crossrefs

Programs

  • Maple
    f := proc (n) options operator, arrow: q^n*(product(1-q^(4*j-2), j = 1 .. n))/(1-q^2)^n end proc: for n from 0 to 4 do P[n] := sort(expand(simplify(f(n)))) end do: for n from 0 to 4 do seq(coeff(P[n], q, j), j = 0 .. n*(2*n-1)) end do; # yields sequence in triangular form
  • Mathematica
    P[n_] := P[n] = q^n*Product[1 - q^(4j - 2), {j, 1, n}]/(1 - q^2)^n // Expand // Simplify;
    T[n_, k_] := Coefficient[P[n], q, k];
    Table[T[n, k], {n, 0, 5}, {k, 0, n (2n - 1)}] // Flatten (* Jean-François Alcover, Aug 23 2024 *)

Formula

Generating polynomial of row n is P_n(q) = (q/(1-q^2))^n*Product_{j=1..n}(1-q^(4j-2)).
Showing 1-10 of 10 results.