cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128080 Triangle, read by rows of n(n-1)+1 terms, of coefficients of q in the q-analog of the odd double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 14, 15, 14, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 45, 60, 74, 86, 94, 97, 94, 86, 74, 60, 45, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 110, 170, 244, 330, 424, 521, 614, 696, 760, 801, 815, 801, 760, 696, 614, 521, 424, 330, 244, 170
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128084 for the triangle of coefficients of q in the q-analog of the even double factorials.

Examples

			Triangle begins:
  1;
  1;
  1,1,1;
  1,2,3,3,3,2,1;
  1,3,6,9,12,14,15,14,12,9,6,3,1;
  1,4,10,19,31,45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
  ...
		

Crossrefs

Cf. A001147 (row sums); A128081 (central terms), A128082 (diagonal), A128083 (row squared sums); A128084.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    T:= n-> (p-> seq(coeff(p, q, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..6);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    Catenate@Table[CoefficientList[Cancel@FunctionExpand[-q QPochhammer[1/q, q^2, n + 1]/(1 - q)^(n + 1)], q], {n, 0, 6}] (* Vladimir Reshetnikov, Sep 22 2021 *)
    T[n_] := If[n == 0, {1}, Product[(1 - q^(2 j - 1))/(1 - q), {j, 1, n}] + O[q]^(n (n + 1)) // CoefficientList[#, q]&];
    Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Sep 27 2022 *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n-1),0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)))
    for(n=0,8,for(k=0,n*(n-1),print1(T(n,k),", "));print(""))

Formula

The row sums are A001147, the odd double factorial numbers (2n-1)!!.

A128082 A diagonal of the triangle A128080 of coefficients of q in the q-analog of the odd double factorials: a(n) = A128080(n+1,n).

Original entry on oeis.org

1, 1, 3, 9, 31, 110, 400, 1477, 5516, 20775, 78762, 300179, 1148995, 4413877, 17007798, 65707390, 254430080, 987162527, 3836843836, 14936223511, 58226118626, 227271470103, 888117198666, 3474154716353, 13603246639501, 53310945927025, 209093495360796
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Examples

			a(n) is the n-th term in the q-analog of odd double factorial (2n+1)!!, in which the coefficients of q (triangle A128080) begin:
   1;
  (1);
   1,(1),1;
   1,2,(3),3,3,2,1;
   1,3,6,(9),12,14,15,14,12,9,6,3,1;
   1,4,10,19,(31),45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128081 (central terms).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+1), q, n):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2k-1))/(1-q), {k, 1, n+1}], {q, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 31 2021 *)
  • PARI
    a(n)=if(n<1,0,polcoeff(prod(k=1,n,(1-q^(2*k-1))/(1-q)),n-1,q))

Formula

a(n+1) = A181971(2*n,n). - Reinhard Zumkeller, Jul 09 2012
a(n) ~ c * 2^(2*n) / sqrt(n), where c = QPochhammer(1/2, 1/4) / sqrt(Pi) = 0.236633772766964806372497000634617466975260409008748... - Vaclav Kotesovec, Feb 07 2023, updated Mar 17 2024

A128083 Sum of squared coefficients of q in the q-analog of the odd double factorials.

Original entry on oeis.org

1, 1, 3, 37, 1159, 66953, 6158021, 825889193, 152147002939, 36866098462221, 11368538145120143, 4347671960639941039, 2019396728684584627337, 1119792551093682455434255, 730724550040451849614251167
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Crossrefs

Cf. A001147 ((2n-1)!!); A128080 (triangle), A128081 (central terms), A128082 (diagonal); A127728, A128087.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j-1))/(1-q)),k,q)^2))}

A128085 Central coefficients of q in the q-analog of the even double factorials: a(n) = [q^([n^2/2])] Product_{j=1..n} (1-q^(2j))/(1-q).

Original entry on oeis.org

1, 1, 2, 8, 46, 340, 3210, 36336, 484636, 7394458, 127707302, 2454109404, 52091631896, 1207854671388, 30431260261770, 826657521349952, 24114046688034516, 751085176539860458, 24899882719111953556
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128081 for central coefficients of q in the q-analog of the odd double factorials. Also, A000140 is the central coefficients of q-factorials, giving the maximum number of permutations on n letters having the same number of inversions.

Examples

			a(n) is the central term of the q-analog of even double factorials,
in which the coefficients of q (triangle A128084) begin:
n=0: (1);
n=1: (1),1;
n=2: 1,2,(2),2,1;
n=3: 1,3,5,7,(8),8,7,5,3,1;
n=4: 1,4,9,16,24,32,39,44,(46),44,39,32,24,16,9,4,1;
n=5: 1,5,14,30,54,86,125,169,215,259,297,325,(340),340,325,297,...;...
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128086 (diagonal); A128081.

Programs

  • PARI
    a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n^2\2,q))

A350307 a(n) is the constant term in the expansion of Product_{j=1..n} (Sum_{k=-j..j} x^k)^n.

Original entry on oeis.org

1, 1, 37, 100683, 42935363305, 4440604747662968975, 161247684066768055445081543753, 2819198261291991623302749353791096334609249, 31233334332507494719367656927521237896029724037781845363309
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2021

Keywords

Comments

a(n) is the coefficient of x^(n^2 * (n+1)/2) in Product_{j=0..n} (Sum_{k=0..2*j} x^k)^n.

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[Sum[x^k, {k, -j, j}]^n, {j, 1, n}], {x, 0, 0}], x, 0]; Array[a, 9, 0] (* Amiram Eldar, Dec 24 2021 *)
  • PARI
    a(n) = polcoef(prod(j=1, n, sum(k=-j, j, x^k))^n, 0);
    
  • PARI
    a(n) = polcoef(prod(j=1, n, sum(k=0, 2*j, x^k))^n, n^2*(n+1)/2);
Showing 1-5 of 5 results.