A128084
Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919
Offset: 0
The row sums form A000165, the even double factorial numbers:
[1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 2, 2, 1;
1, 3, 5, 7, 8, 8, 7, 5, 3, 1;
1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1;
...
- Paul D. Hanna, Rows n=0..30 of triangle, in flattened form.
- Hasan Arslan, A combinatorial interpretation of Mahonian numbers of type B, arXiv:2404.05099 [math.CO], 2024.
- Thomas Kahle and Christian Stump, Counting inversions and descents of random elements in finite Coxeter groups, arXiv:1802.01389 [math.CO], 2018-2019.
- Ali Kessouri, Moussa Ahmia, Hasan Arslan, and Salim Mesbahi, Combinatorics of q-Mahonian numbers of type B and log-concavity, arXiv:2408.02424 [math.CO], 2024. See p. 6.
- Eric Weisstein's World of Mathematics, q-Factorial.
- A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
- A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
- A. V. Yurkin, New binomial and new view on light theory, LAP Lambert Academic Publishing, 2013, 78 pages.
-
t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
-
{T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
-
row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ Andrew Howroyd, Mar 21 2025
A128085
Central coefficients of q in the q-analog of the even double factorials: a(n) = [q^([n^2/2])] Product_{j=1..n} (1-q^(2j))/(1-q).
Original entry on oeis.org
1, 1, 2, 8, 46, 340, 3210, 36336, 484636, 7394458, 127707302, 2454109404, 52091631896, 1207854671388, 30431260261770, 826657521349952, 24114046688034516, 751085176539860458, 24899882719111953556
Offset: 0
a(n) is the central term of the q-analog of even double factorials,
in which the coefficients of q (triangle A128084) begin:
n=0: (1);
n=1: (1),1;
n=2: 1,2,(2),2,1;
n=3: 1,3,5,7,(8),8,7,5,3,1;
n=4: 1,4,9,16,24,32,39,44,(46),44,39,32,24,16,9,4,1;
n=5: 1,5,14,30,54,86,125,169,215,259,297,325,(340),340,325,297,...;...
The terms enclosed in parenthesis are initial terms of this sequence.
-
a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n^2\2,q))
A128596
Triangle, read by rows, of coefficients of q^(nk) in the q-analog of the even double factorials: T(n,k) = [q^(nk)] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 24, 46, 24, 1, 1, 86, 297, 297, 86, 1, 1, 315, 1919, 3210, 1919, 315, 1, 1, 1170, 12399, 32510, 32510, 12399, 1170, 1, 1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1, 1, 16588, 520399, 3054100, 6730832, 6730832
Offset: 0
Row sums equal 2*A000165(n-1) for n>0, twice the even double factorials:
[1, 2, 4, 16, 96, 768, 7680, 92160, 1290240, ..., 2*(2n-2)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 24, 46, 24, 1;
1, 86, 297, 297, 86, 1;
1, 315, 1919, 3210, 1919, 315, 1;
1, 1170, 12399, 32510, 32510, 12399, 1170, 1;
1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1;
1, 16588, 520399, 3054100, 6730832, 6730832, 3054100, 520399, 16588, 1;
1, 63064, 3382588, 28980565, 89514691, 127707302, 89514691, 28980565, 3382588, 63064, 1;
-
T(n,k)=if(k<0 || k>n^2,0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),n*k,q)))
A128087
Sum of squared coefficients of q in the q-analog of the even double factorials.
Original entry on oeis.org
1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0
-
{a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}
A128597
Column 2 of triangle A128596; a(n) = coefficient of q^(2n+4) in the q-analog of the even double factorials (2n+4)!! for n>=0.
Original entry on oeis.org
1, 7, 46, 297, 1919, 12399, 80241, 520399, 3382588, 22034519, 143826980, 940569228, 6161492611, 40426009162, 265617089899, 1747501590554, 11510584144337, 75901841055650, 501007227527884, 3310076954166501
Offset: 0
-
{a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j))/(1-q)),2*n+4,q)}
A128598
Column 3 of triangle A128596; a(n) = coefficient of q^(3n+9) in the q-analog of the even double factorials (2n+6)!! for n>=0.
Original entry on oeis.org
1, 24, 297, 3210, 32510, 318171, 3054100, 28980565, 273077443, 2562036673, 23973009386, 223949654108, 2090070431683, 19496003736658, 181815760387221, 1695523268254637, 15813185728272754, 147508341317700463
Offset: 0
-
{a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j))/(1-q)),3*n+9,q)}
Showing 1-6 of 6 results.
Comments