cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A128084 Triangle, read by rows of n^2+1 terms, of coefficients of q in the q-analog of the even double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 39, 44, 46, 44, 39, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 125, 169, 215, 259, 297, 325, 340, 340, 325, 297, 259, 215, 169, 125, 86, 54, 30, 14, 5, 1, 1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128080 for the triangle of coefficients of q in the q-analog of the odd double factorials.
Row maxima ~ 2^n*n!/(sigma * sqrt(2*Pi)), sigma^2 = (4*n^3 + 6*n^2 - n)/36 = variance of Coxeter group B_n (see also A161858). - Mikhail Gaichenkov, Feb 08 2023

Examples

			The row sums form A000165, the even double factorial numbers:
  [1, 2, 8, 48, 384, 3840, 46080, 645120, ..., (2n)!!, ...].
Triangle begins:
 1;
 1, 1;
 1, 2,  2,  2,  1;
 1, 3,  5,  7,  8,  8,   7,   5,   3,   1;
 1, 4,  9, 16, 24, 32,  39,  44,  46,  44,  39,  32,  24,  16,   9,   4,   1;
 ...
		

Crossrefs

Cf. A000165 ((2n)!!); A128085 (central terms); A128086 (diagonal), A128087 (row squared sums); A128080, A002522 (row lengths).
The growth series for the affine Coxeter groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858.

Programs

  • Mathematica
    t[n_, k_] := If[k < 0 || k > n^2, 0, If[n == 0, 1, Coefficient[ Series[ Product[ (1 - q^(2*j))/(1 - q), {j, 1, n}], {q, 0, n^2}], q, k]]]; Table[t[n, k], {n, 0, 6}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n,k) = if(k<0||k>n^2,0, if(n==0,1, polcoeff( prod(j=1,n,(1-q^(2*j))/(1-q)), k,q) ))}
    for(n=0,8,for(k=0,n^2,print1(T(n,k),", "));print(""))
    
  • PARI
    row(n)=Vec(prod(j=1, n, (1-x^(2*j))/(1-x))) \\ Andrew Howroyd, Mar 21 2025

A128085 Central coefficients of q in the q-analog of the even double factorials: a(n) = [q^([n^2/2])] Product_{j=1..n} (1-q^(2j))/(1-q).

Original entry on oeis.org

1, 1, 2, 8, 46, 340, 3210, 36336, 484636, 7394458, 127707302, 2454109404, 52091631896, 1207854671388, 30431260261770, 826657521349952, 24114046688034516, 751085176539860458, 24899882719111953556
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128081 for central coefficients of q in the q-analog of the odd double factorials. Also, A000140 is the central coefficients of q-factorials, giving the maximum number of permutations on n letters having the same number of inversions.

Examples

			a(n) is the central term of the q-analog of even double factorials,
in which the coefficients of q (triangle A128084) begin:
n=0: (1);
n=1: (1),1;
n=2: 1,2,(2),2,1;
n=3: 1,3,5,7,(8),8,7,5,3,1;
n=4: 1,4,9,16,24,32,39,44,(46),44,39,32,24,16,9,4,1;
n=5: 1,5,14,30,54,86,125,169,215,259,297,325,(340),340,325,297,...;...
The terms enclosed in parenthesis are initial terms of this sequence.
		

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128086 (diagonal); A128081.

Programs

  • PARI
    a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-q^(2*k))/(1-q)),n^2\2,q))

A128596 Triangle, read by rows, of coefficients of q^(nk) in the q-analog of the even double factorials: T(n,k) = [q^(nk)] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 24, 46, 24, 1, 1, 86, 297, 297, 86, 1, 1, 315, 1919, 3210, 1919, 315, 1, 1, 1170, 12399, 32510, 32510, 12399, 1170, 1, 1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1, 1, 16588, 520399, 3054100, 6730832, 6730832
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Row sums equal 2*A000165(n-1) for n>0, twice the even double factorials:
[1, 2, 4, 16, 96, 768, 7680, 92160, 1290240, ..., 2*(2n-2)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 24, 46, 24, 1;
1, 86, 297, 297, 86, 1;
1, 315, 1919, 3210, 1919, 315, 1;
1, 1170, 12399, 32510, 32510, 12399, 1170, 1;
1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1;
1, 16588, 520399, 3054100, 6730832, 6730832, 3054100, 520399, 16588, 1;
1, 63064, 3382588, 28980565, 89514691, 127707302, 89514691, 28980565, 3382588, 63064, 1;
		

Crossrefs

Cf. A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2), A128598 (column 3); variant: A128592.

Programs

  • PARI
    T(n,k)=if(k<0 || k>n^2,0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),n*k,q)))

Formula

T(n,k) = A128084(n,nk) where A128084 is the triangle of coefficients of q in the q-analog of the even double factorials.

A128087 Sum of squared coefficients of q in the q-analog of the even double factorials.

Original entry on oeis.org

1, 2, 14, 296, 12938, 956720, 107245250, 16966970200, 3601980861720, 988252809411908, 340375635448973106, 143798619953044471444, 73123320014581106403732, 44060303354020797873285800
Offset: 0

Views

Author

Paul D. Hanna, Feb 14 2007

Keywords

Comments

See A128083 for sum of squared coefficients of q in the q-analog of the odd double factorials. Also, A127728 is the sum of squared coefficients of q in the q-factorials.

Crossrefs

Cf. A000165 ((2n)!!); A128084 (triangle), A128085 (central terms), A128086 (diagonal); A127728.

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n^2,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),k,q)^2))}

A128597 Column 2 of triangle A128596; a(n) = coefficient of q^(2n+4) in the q-analog of the even double factorials (2n+4)!! for n>=0.

Original entry on oeis.org

1, 7, 46, 297, 1919, 12399, 80241, 520399, 3382588, 22034519, 143826980, 940569228, 6161492611, 40426009162, 265617089899, 1747501590554, 11510584144337, 75901841055650, 501007227527884, 3310076954166501
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128598 (column 3).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j))/(1-q)),2*n+4,q)}

Formula

a(n) = [q^(2n+4)] Product_{j=1..n+2} (1-q^(2j))/(1-q) for n>=0.

A128598 Column 3 of triangle A128596; a(n) = coefficient of q^(3n+9) in the q-analog of the even double factorials (2n+6)!! for n>=0.

Original entry on oeis.org

1, 24, 297, 3210, 32510, 318171, 3054100, 28980565, 273077443, 2562036673, 23973009386, 223949654108, 2090070431683, 19496003736658, 181815760387221, 1695523268254637, 15813185728272754, 147508341317700463
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j))/(1-q)),3*n+9,q)}

Formula

a(n) = [q^(3n+9)] Product_{j=1..n+3} (1-q^(2j))/(1-q) for n>=0.
Showing 1-6 of 6 results.