A127739 Triangle read by rows, in which row n contains the triangular number T(n) = A000217(n) repeated n times; smallest triangular number greater than or equal to n.
1, 3, 3, 6, 6, 6, 10, 10, 10, 10, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 36, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66
Offset: 1
Examples
First few rows of the triangle are: 1; 3, 3; 6, 6, 6; 10, 10, 10, 10; 15, 15, 15, 15, 15; ...
Links
- Reinhard Zumkeller, Rows n=1..100 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Haskell
a127739 n k = a127739_tabl !! (n-1) !! (k-1) a127739_row n = a127739_tabl !! (n-1) a127739_tabl = zipWith ($) (map replicate [1..]) $ tail a000217_list -- Reinhard Zumkeller, Feb 03 2012, Mar 18 2011
-
Maple
A127739 := proc(n) local t, s; t := 1; s := 0; while t <= n do s := s + 1; t := t + s od; s*(1 + s)/2 end: seq(A127739(n), n = 1..66); # Peter Luschny, Oct 29 2022
-
Mathematica
Table[n(n+1)/2,{n,100},{n}]//Flatten (* Zak Seidov, Mar 19 2011 *)
-
PARI
A127739=n->binomial((sqrtint(8*n)+3)\2,2) \\ M. F. Hasler, Mar 09 2014
-
Python
from math import isqrt def A127739(n): return (r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(r+1)>>1 # Chai Wah Wu, Nov 07 2024
Formula
Central terms: T(2*n-1,n) = A000384(n). - Reinhard Zumkeller, Mar 18 2011
a(n) = A003057(n)*A002024(n)/2; a(n) = (t+2)*(t+1)/2, where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 08 2013
Sum_{n>=1} 1/a(n)^2 = 8 - 2*Pi^2/3. - Amiram Eldar, Aug 15 2022
Extensions
Name edited by Michel Marcus, Apr 30 2020
Comments