cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002411 Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.

Original entry on oeis.org

0, 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206, 11368, 12615, 13950, 15376, 16896, 18513, 20230, 22050, 23976, 26011, 28158, 30420, 32800, 35301, 37926, 40678
Offset: 0

Views

Author

Keywords

Comments

a(n) = n^2(n+1)/2 is half the number of colorings of three points on a line with n+1 colors. - R. H. Hardin, Feb 23 2002
Sum of n smallest multiples of n. - Amarnath Murthy, Sep 20 2002
a(n) = number of (n+6)-bit binary sequences with exactly 7 1's none of which is isolated. A 1 is isolated if its immediate neighbor(s) are 0. - David Callan, Jul 15 2004
Also as a(n) = (1/6)*(3*n^3+3*n^2), n > 0: structured trigonal prism numbers (cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
If Y is a 3-subset of an n-set X then, for n >= 5, a(n-4) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n-1), n >= 2, is the number of ways to have n identical objects in m=2 of altogether n distinguishable boxes (n-2 boxes stay empty). - Wolfdieter Lang, Nov 13 2007
a(n+1) is the convolution of (n+1) and (3n+1). - Paul Barry, Sep 18 2008
The number of 3-character strings from an alphabet of n symbols, if a string and its reversal are considered to be the same.
Partial sums give A001296. - Jonathan Vos Post, Mar 26 2011
a(n-1):=N_1(n), n >= 1, is the number of edges of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p.506. - Wolfdieter Lang, May 27 2011
Partial sums of pentagonal numbers A000326. - Reinhard Zumkeller, Jul 07 2012
From Ant King, Oct 23 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002411(n)) form the purely periodic 9-cycle {1,6,9,4,3,9,7,9,9}.
For n > 0, the units' digits of this sequence A010879(A002411(n)) form the purely periodic 20-cycle {1,6,8,0,5,6,6,8,5,0,6,6,3,0,0,6,1,8,0,0}.
(End)
a(n) is the number of inequivalent ways to color a path graph having 3 nodes using at most n colors. Note, here there is no restriction on the color of adjacent nodes as in the above comment by R. H. Hardin (Feb 23 2002). Also, here the structures are counted up to graph isomorphism, where as in the above comment the "three points on a line" are considered to be embedded in the plane. - Geoffrey Critzer, Mar 20 2013
After 0, row sums of the triangle in A101468. - Bruno Berselli, Feb 10 2014
Latin Square Towers: Take a Latin square of order n, with symbols from 1 to n, and replace each symbol x with a tower of height x. Then the total number of unit cubes used is a(n). - Arun Giridhar, Mar 29 2015
This is the case k = n+4 of b(n,k) = n*((k-2)*n-(k-4))/2, which is the n-th k-gonal number. Therefore, this is the 3rd upper diagonal of the array in A139600. - Luciano Ancora, Apr 11 2015
For n > 0, a(n) is the number of compositions of n+7 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Also the Wiener index of the n-antiprism graph. - Eric W. Weisstein, Sep 07 2017
For n > 0, a(2n+1) is the number of non-isomorphic 5C_m-snakes, where m = 2n+1 or m = 2n (for n >= 2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 15 2019
For n >= 1, a(n-1) is the number of 0°- and 45°-tilted squares that can be drawn by joining points in an n X n lattice. - Paolo Xausa, Apr 13 2021
a(n) is the number of all possible products of n rolls of a six-sided die. This can be easily seen by the recursive formula a(n) = a(n - 1) + 2 * binomial(n, 2) + binomial(n + 1, 2). - Rafal Walczak, Jun 15 2024
a(n) is the number of all triples consisting of nonnegative integers smaller than n such that the sum of the first two integers is less than n. - Ruediger Jehn, Aug 17 2025

Examples

			a(3)=18 because 4 identical balls can be put into m=2 of n=4 distinguishable boxes in binomial(4,2)*(2!/(1!*1!) + 2!/2!) = 6*(2+1) = 18 ways. The m=2 part partitions of 4, namely (1,3) and (2,2), specify the filling of each of the 6 possible two-box choices. - _Wolfdieter Lang_, Nov 13 2007
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_1.
  • Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., Vol. 60 (2001), pp. 85-96.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/5).
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see Vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A006002(n) = -a(-1-n).
a(n) = A093560(n+2, 3), (3, 1)-Pascal column.
A row or column of A132191.
Second column of triangle A103371.
Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..45], n->n^2*(n+1)/2); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a002411 n = n * a000217 n  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n^2*(n+1)/2: n in [0..40]]; // Wesley Ivan Hurt, May 25 2014
    
  • Maple
    seq(n^2*(n+1)/2, n=0..40);
  • Mathematica
    Table[n^2 (n + 1)/2, {n, 0, 40}]
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 18}, 50] (* Harvey P. Dale, Oct 20 2011 *)
    Nest[Accumulate, Range[1, 140, 3], 2] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    CoefficientList[Series[x (1 + 2 x) / (1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jan 08 2016 *)
  • PARI
    a(n)=n^2*(n+1)/2
    
  • PARI
    concat(0, Vec(x*(1+2*x)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 07 2016
    

Formula

Average of n^2 and n^3.
G.f.: x*(1+2*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = n*Sum_{k=0..n} (n-k) = n*Sum_{k=0..n} k. - Paul Barry, Jul 21 2003
a(n) = n*A000217(n). - Xavier Acloque, Oct 27 2003
a(n) = (1/2)*Sum_{j=1..n} Sum_{i=1..n} (i+j) = (1/2)*(n^2+n^3) = (1/2)*A011379(n). - Alexander Adamchuk, Apr 13 2006
Row sums of triangle A127739, triangle A132118; and binomial transform of [1, 5, 7, 3, 0, 0, 0, ...] = (1, 6, 18, 40, 75, ...). - Gary W. Adamson, Aug 10 2007
G.f.: x*F(2,3;1;x). - Paul Barry, Sep 18 2008
Sum_{j>=1} 1/a(j) = hypergeom([1, 1, 1], [2, 3], 1) = -2 + 2*zeta(2) = A195055 - 2. - Stephen Crowley, Jun 28 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Oct 20 2011
From Ant King, Oct 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3.
a(n) = (n+1)*(2*A000326(n)+n)/6 = A000292(n) + 2*A000292(n-1).
a(n) = A000330(n)+A000292(n-1) = A000217(n) + 3*A000292(n-1).
a(n) = binomial(n+2,3) + 2*binomial(n+1,3).
(End)
a(n) = (A000330(n) + A002412(n))/2 = (A000292(n) + A002413(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = (24/(n+3)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+3). - Vladimir Kruchinin, Jun 04 2013
Sum_{n>=1} a(n)/n! = (7/2)*exp(1). - Richard R. Forberg, Jul 15 2013
E.g.f.: x*(2 + 4*x + x^2)*exp(x)/2. - Ilya Gutkovskiy, May 31 2016
From R. J. Mathar, Jul 28 2016: (Start)
a(n) = A057145(n+4,n).
a(n) = A080851(3,n-1). (End)
For n >= 1, a(n) = (Sum_{i=1..n} i^2) + Sum_{i=0..n-1} i^2*((i+n) mod 2). - Paolo Xausa, Apr 13 2021
a(n) = Sum_{k=1..n} GCD(k,n) * LCM(k,n). - Vaclav Kotesovec, May 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 + Pi^2/6 - 4*log(2). - Amiram Eldar, Jan 03 2022

A057944 Largest triangular number less than or equal to n; write m-th triangular number m+1 times.

Original entry on oeis.org

0, 1, 1, 3, 3, 3, 6, 6, 6, 6, 10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 15, 21, 21, 21, 21, 21, 21, 21, 28, 28, 28, 28, 28, 28, 28, 28, 36, 36, 36, 36, 36, 36, 36, 36, 36, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2000

Keywords

Examples

			a(35) = 28 since 28 and 36 are successive triangular numbers and 28 <= 35 < 36.
		

Crossrefs

Programs

  • Haskell
    a057944 n = a057944_list !! n          -- common flat access
    a057944_list = concat a057944_tabl
    a057944' n k = a057944_tabl !! n !! k  -- access when seen as a triangle
    a057944_row n = a057944_tabl !! n
    a057944_tabl = zipWith ($) (map replicate [1..]) a000217_list
    -- Reinhard Zumkeller, Feb 03 2012
    
  • Maple
    A057944 := proc(n)
            k := (-1+sqrt(1+8*n))/2 ;
            k := floor(k) ;
            k*(k+1)/2 ;
    end proc; # R. J. Mathar, Nov 05 2011
  • Mathematica
    f[n_] := Block[{a = Floor@ Sqrt[1 + 8 n]}, Floor[(a - 1)/2]*Floor[(a + 1)/2]/2]; Array[f, 72, 0]
    t0=0; t1=1; k=1; Table[If[n < t1, t0, k++; t0=t1; t1=t1+k; t0], {n, 0, 72}]
    With[{nn=15},Table[#[[1]],#[[2]]+1]&/@Thread[{Accumulate[Range[ 0,nn]],Range[ 0,nn]}]]//Flatten (* Harvey P. Dale, Mar 01 2020 *)
  • PARI
    a(n)=my(t=(sqrtint(8*n+7)-1)\2);t*(t+1)/2 \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    from math import comb, isqrt
    def A057944(n): return comb((m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),2) # Chai Wah Wu, Nov 09 2024

Formula

a(n) = floor((sqrt(1+8*n)-1)/2)*floor((sqrt(1+8*n)+1)/2)/2 = (trinv(n)*(trinv(n)-1))/2 = A000217(A003056(n)) = n - A002262(n)
a(n) = (1/2)*t*(t-1), where t = floor(sqrt(2*n+1)+1/2) = A002024(n+1). - Ridouane Oudra, Oct 20 2019
Sum_{n>=1} 1/a(n)^2 = 2*Pi^2/3 - 4. - Amiram Eldar, Aug 14 2022

Extensions

Keyword tabl added by Reinhard Zumkeller, Feb 03 2012

A004202 Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.

Original entry on oeis.org

2, 5, 6, 10, 11, 12, 17, 18, 19, 20, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 54, 55, 56, 65, 66, 67, 68, 69, 70, 71, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Alexander Stasinski

Keywords

Comments

a(n) are the numbers satisfying m < sqrt(a(n)) < m + 0.5 for some integer m. - Floor van Lamoen, Jul 24 2001
a(A000217(n)) = A002378(n). [Reinhard Zumkeller, Feb 12 2011]
Complement of A004201. Upper s(n)-Wythoff sequence (as defined in A184117), for s(n)=A002024(n)=floor[1/2+sqrt(2n)]. I.e., A004202(n) = A002024(n) + A004201(n), with A004201(1)=1 and for n>1, A004201(n) = least positive integer not yet in (A004201(1..n-1) union A004202(1..n-1)). - M. F. Hasler (following observations from R. J. Mathar), Feb 13 2011
Positions of record values in A256188 that are greater than 1: A014132(n) = A256188(a(n)). - Reinhard Zumkeller, Mar 26 2015

Examples

			Interpretation as  Wythoff sequence (from _Clark Kimberling_):
s = (1,2,2,3,3,3,4,4,4,4...) = A002024 (n n's);
a = (1,3,4,7,8,9,13,14,...) = A004201 = least number > 0 not yet in a or b;
b = (2,5,6,10,11,12,17,18,...) = A004202 = a+s.
From _Michael Somos_, May 03 2019: (Start)
As a triangular array
  2;
  5,  6;
  10, 11, 12;
  17, 18, 19, 20;
(End)
		

Crossrefs

Programs

  • Haskell
    a004202 n = a004202_list !! (n-1)
    a004202_list = skipTake 1 [1..] where
       skipTake k xs = take k (drop k xs) ++ skipTake (k + 1) (drop (2*k) xs)
    -- Reinhard Zumkeller, Feb 12 2011
    
  • Mathematica
    a = Table[n, {n, 1, 210} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
    a[ n_] := If[ n < 1, 0, With[{m = Round@Sqrt[2 n]}, n + m (m + 1)/2]]; (* Michael Somos, May 03 2019 *)
    Take[#,(-Length[#])/2]&/@Module[{nn=20},TakeList[Range[ nn+nn^2],2*Range[ nn]]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    A004202(n) = n+0+(n=(sqrtint(8*n-7)+1)\2)*(n+1)\2  \\ M. F. Hasler, Feb 13 2011
    
  • PARI
    {a(n) = my(m); if( n<1, 0, m=round(sqrt(2*n)); n + m*(m+1)/2)}; /* Michael Somos, May 03 2019 */
    
  • Python
    from math import isqrt, comb
    def A004202(n): return n+comb((m:=isqrt(k:=n<<1))+(k-m*(m+1)>=1)+1,2) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = n + A000217(A002024(n)). - M. F. Hasler, Feb 13 2011
T(n, k) = n^2 + k, for n>=1, k>=1 as a triangular array. a(n) = n + A127739(n). - Michael Somos, May 03 2019
Showing 1-3 of 3 results.