A127743 Triangular array where T(n,k) is the number of set partitions of n with k atomic parts.
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 22, 16, 9, 4, 1, 92, 60, 31, 14, 5, 1, 426, 252, 120, 52, 20, 6, 1, 2146, 1160, 510, 209, 80, 27, 7, 1, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
Offset: 1
Examples
The partitions of 4 are 4 31 22 211 1111 and the products are 1*6 2*2 1*1 3*1 1*1 therefore row 4 of the table is 6 5 3 1. From _Philippe Deléham_, Aug 03 2007: (Start) Triangle begins: 1; 1, 1; 2, 2, 1; 6, 5, 3, 1; 22, 16, 9, 4, 1; 92, 60, 31, 14, 5, 1; 426, 252, 120, 52, 20, 6, 1; 2146, 1160, 510, 209, 80, 27, 7, 1; ... Triangle [0,1,1,2,1,3,1,4,1,...] DELTA [1,0,0,0,0,0,...] begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 6, 5, 3, 1; 0, 22, 16, 9, 4, 1; 0, 92, 60, 31, 14, 5, 1; 0, 426, 252, 120, 52, 20, 6, 1; 0, 2146, 1160, 510, 209, 80, 27, 7, 1; ... (End)
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, m_] := T[n, m] = Sum[Sum[T[k+i, k]*Binomial[n-m-k-1, n-m-k-i], {i, 1, n-m-k}]*Binomial[k+m-1, k], {k, 1, n-m}] + Binomial[n-1, n-m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 23 2015, after Vladimir Kruchinin *)
-
Maxima
T(n,m):=sum((sum(T(k+i,k)*binomial(n-m-k-1,n-m-k-i),i,1,n-m-k))*binomial(k+m-1,k),k,1,n-m)+binomial(n-1,n-m); /* Vladimir Kruchinin, Mar 21 2015 */
-
PARI
{T(n,m) = sum(k=1,n-m, (sum(i=1, n-m-k, (T(k+i, k)*binomial(n-m-k-1, n-m-k-i))*binomial(k+m-1, k)))) + binomial(n-1, n-m)}; for(n=1, 10, for(m=1, n, print1(T(n,m), ", "))) \\ G. C. Greubel, Dec 06 2018
Formula
T(n, m) = Sum_{k=1..n-m}( Sum_{i=1..n-m-k}(T(k+i, k)*C(n-m-k-1, n-m-k-i))*C(k+m-1, k) ) + C(n-1, n-m). - Vladimir Kruchinin, Mar 21 2015
Extensions
Edited by Franklin T. Adams-Watters, Jan 25 2010
Comments