cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127746 Smallest n-digit prime whose reversal is also prime.

Original entry on oeis.org

2, 13, 107, 1009, 10007, 100049, 1000033, 10000169, 100000007, 1000000007, 10000000207, 100000000237, 1000000000091, 10000000000313, 100000000000261, 1000000000000273, 10000000000000079, 100000000000000049
Offset: 1

Views

Author

Lekraj Beedassy, Jan 28 2007

Keywords

Comments

Smallest n-digit emirp (A006567).
Largest n-digit emirp is given by A114019.
Least emirp (A006567) greater than 10^(n-1). [Jonathan Vos Post, Nov 15 2009]
Palindromes not permitted (with the exception of the first term), so for example 101 is not a term. - Harvey P. Dale, Mar 11 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 10^(n - 1), id, rid}, While[ id = IntegerDigits[k]; rid = Reverse[id]; ! PrimeQ[k] || ! PrimeQ[FromDigits[rid]] || id == rid, k++ ]; k]; Table[f[n], {n, 2, 19}] (* Ray Chandler, Jan 30 2007 *)
    sndp[n_]:=Module[{np=NextPrime[10^(n+1)]},While[PalindromeQ[np] || !PrimeQ[ IntegerReverse[ np]],np= NextPrime[np]];np]; Join[{2},Array[sndp,20,0]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 11 2017 *)

Extensions

Edited and extended by Ray Chandler, Jan 30 2007

A127827 Smallest n-digit emirp (A006567) with nondecreasing digits.

Original entry on oeis.org

13, 113, 1223, 11149, 111119, 1111339, 11111117, 111111199, 1111111999, 11111111113, 111111111149, 1111111111267, 11111111111257, 111111111113447, 1111111111112227, 11111111111122223, 111111111111113569, 1111111111111113779, 11111111111111133677, 111111111111111111157, 1111111111111111122359, 11111111111111111133469
Offset: 2

Views

Author

Ray Chandler, Jan 31 2007

Keywords

Crossrefs

Programs

  • Maple
    nextl:= proc(L)
    local m,k,r;
    # L a list of digits 1-9, last odd, in nondecreasing order
    if L[-1]<= 7 then return subsop(-1=L[-1]+2, L) fi;
    m:= nops(L); k:= m-1;
    while L[k] =9 do k:= k-1 od:
    r:= [op(L[1..k-1]),(L[k]+1) $ (m+1-k)];
    if r[-1]::even then r:= subsop(-1=r[-1]+1, r) fi;
    r
    end proc:
    f:= proc(n) local L,p,q,i;
      L:= [1$n];
      do
        p:= add(L[i]*10^(i-1),i=1..n);
        q:= add(L[-i]*10^(i-1),i=1..n);
        if q <> p and isprime(p) and isprime(q) then return(q) fi;
        L:= nextl(L);
      od
    end proc:
    map(f, [$2..30]); # Robert Israel, Nov 19 2017
  • Python
    from sympy import isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def bgen(d):
        nd = ("".join(m) for m in mc("123456789", d))
        yield from filter(isprime, map(int, nd))
    def ok(ndp):
        s = str(ndp)
        return len(set(s)) != 1 and isprime(int(s[::-1]))
    def agen():
        yield from (next(filter(ok, bgen(d))) for d in count(2))
    print(list(islice(agen(), 22))) # Michael S. Branicky, Jun 26 2022

Extensions

More terms from Robert Israel, Nov 19 2017
Showing 1-2 of 2 results.