cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A360885 G.f. satisfies A(x) = 1 + x * A(x * (1 + x^2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 16, 39, 93, 246, 671, 1884, 5578, 16887, 52854, 170649, 563703, 1914366, 6649798, 23610987, 85689987, 317054427, 1196183592, 4595744763, 17965311672, 71426213637, 288535755417, 1183807706841, 4929801601890, 20825803784129, 89210585925338
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1-2*j, j)*v[i-2*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1-2*k,k) * a(n-1-2*k).

A360894 G.f. satisfies A(x) = 1 + x * A(x * (1 - x)).

Original entry on oeis.org

1, 1, 1, 0, -2, -1, 7, 0, -44, 69, 276, -1471, 675, 20407, -90560, -20552, 2141700, -10558223, -675239, 329376824, -2106253225, 2364924062, 67114942438, -621638176430, 1926931098484, 14768396756732, -236623058229675, 1371752460097440, 1098671590491324
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\2, (-1)^j*binomial(i-1-j, j)*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n-1-k,k) * a(n-1-k).

A127783 G.f. satisfies: A(x) = 1 + x*A(x+x^2)^2.

Original entry on oeis.org

1, 1, 2, 7, 28, 133, 700, 4039, 25160, 167637, 1186482, 8872752, 69810994, 575912978, 4967058182, 44675926159, 418157494016, 4065044047125, 40973402647058, 427535487044903, 4611642948647118, 51354908876927025
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^2,x,x+x^2));polcoeff(A,n)}

A360886 G.f. satisfies A(x) = 1 + x * A(x * (1 + x^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 7, 11, 22, 49, 104, 212, 471, 1112, 2584, 6000, 14574, 36488, 91148, 230011, 596893, 1574433, 4171388, 11193376, 30594229, 84527225, 235243027, 662702701, 1891111335, 5443353369, 15797764276, 46336647188, 137245713050, 409670144432
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i-1-3*j, j)*v[i-3*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1-3*k,k) * a(n-1-3*k).

A127784 G.f. satisfies: A(x) = 1 + (x+x^2)*A(x+x^2)^2.

Original entry on oeis.org

1, 1, 3, 11, 51, 266, 1540, 9681, 65291, 468401, 3551693, 28327029, 236731183, 2066583601, 18796448581, 177735656083, 1743920667437, 17725856560839, 186366309301259, 2024042644283702, 22679125592930412, 261873356070694571
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+subst(x*A^2,x,x+x^2));polcoeff(A,n)}

A130521 Triangle, read by rows, where T(n,k) = T(n,k-1) + T(n-1,k-2) for n>=k>=2, with T(n+1,1) = T(n+1,0) = T(n,n) and T(0,0) = 1 for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 6, 8, 11, 11, 11, 15, 19, 25, 33, 33, 33, 44, 55, 70, 89, 114, 114, 114, 147, 180, 224, 279, 349, 438, 438, 438, 552, 666, 813, 993, 1217, 1496, 1845, 1845, 1845, 2283, 2721, 3273, 3939, 4752, 5745, 6962, 8458, 8458, 8458, 10303
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2007

Keywords

Comments

G.f. of column 0 (A127782) satisfies: G(x) = 1 + x*G(x+x^2).

Examples

			T(5,3) = T(5,2) + T(4,1) = 15 + 4 = 19;
T(6,4) = T(6,3) + T(5,2) = 55 + 15 = 70;
T(7,0) = T(6,6) = 89 + 25 = 114.
Triangle begins:
1;
1, 1;
1, 1, 2;
2, 2, 3, 4;
4, 4, 6, 8, 11;
11, 11, 15, 19, 25, 33;
33, 33, 44, 55, 70, 89, 114;
114, 114, 147, 180, 224, 279, 349, 438;
438, 438, 552, 666, 813, 993, 1217, 1496, 1845;
1845, 1845, 2283, 2721, 3273, 3939, 4752, 5745, 6962, 8458; ...
		

Crossrefs

Cf. A127782 (column 0), A130522 (diagonal).

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

T(n,0) = Sum_{k=0..[n/2]} C(n-k,k)*T(n-k-1,0) for n>0 with T(0,0)=1. For column 1, T(n,1) = Sum_{k=0..[n/2]+1} [C(n-k,k) + C(n-k+1,k-1)]*T(n-k-1,1) for n>=2, with T(0,1)=T(1,1)=1.

A130522 Diagonal immediately below the main diagonal of triangle A130521.

Original entry on oeis.org

1, 1, 3, 8, 25, 89, 349, 1496, 6962, 34861, 186678, 1063591, 6418167, 40860485, 273513831, 1919284246, 14080876273, 107750778177, 858195666410, 7100543662976, 60922480229704, 541193416875432, 4970306167860426
Offset: 0

Views

Author

Paul D. Hanna, Jun 02 2007

Keywords

Comments

G.f. of column 0 (A127782) satisfies: G(x) = 1 + x*G(x+x^2); main diagonal of triangle A130521 equals column 0 shift left one place.

Crossrefs

Cf. A130521 (triangle), A127782 (column 0).

Programs

  • PARI
    {a(n)=if(n<0,0,if(n<=1,1,sum(k=0,n\2+1,(binomial(n-k,k)+binomial(n-k+1,k-1))*a(n-k-1))))}

Formula

a(n) = Sum_{k=0..[n/2]+1} [C(n-k,k) + C(n-k+1,k-1)]*a(n-k-1) for n>=2, with a(0)=a(1)=1.

A127785 G.f. satisfies: A(x) = 1 + x*A(x+x^2)^3.

Original entry on oeis.org

1, 1, 3, 15, 88, 594, 4404, 35260, 300918, 2714187, 25715364, 254752536, 2629587927, 28202629918, 313575278100, 3607684547463, 42880301468830, 525812475574788, 6643855672178904, 86407881067891029, 1155583581407910414
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^3,x,x+x^2));polcoeff(A,n)}

A140046 G.f. satisfies: A(x) = x/(1 - A(x+x^2)).

Original entry on oeis.org

1, 1, 3, 10, 41, 186, 922, 4911, 27830, 166656, 1049410, 6922476, 47698148, 342483885, 2557538781, 19829608532, 159393394129, 1326509171669, 11415703608635, 101473987987073, 930688926616454, 8798656042121634
Offset: 1

Views

Author

Paul D. Hanna, May 09 2008

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 41*x^5 + 186*x^6 + 922*x^7 +...
A(x+x^2) = x + 2*x^2 + 5*x^3 + 20*x^4 + 90*x^5 + 454*x^6 + 2488*x^7 +...
Let B(x) = x + x^2; define B_{n+1}(x) = B( B_{n}(x) ) with B_0(x)=x;
then g.f. A(x) equals the continued fraction:
A(x) = x/(1 - B(x)/(1 - B_2(x)/(1 - B_3(x)/(1 - B_4(x)/(1 - ...)))))
where B_{n}(x) begin:
B_2(x) = x + 2*x^2 + 2*x^3 + x^4 ;
B_3(x) = x + 3*x^2 + 6*x^3 + 9*x^4 + 10*x^5 + 8*x^6 + 4*x^7 + x^8 ;
B_4(x) = x + 4*x^2 + 12*x^3 + 30*x^4 + 64*x^5 + 118*x^6 + 188*x^7 +...;
B_5(x) = x + 5*x^2 + 20*x^3 + 70*x^4 + 220*x^5 + 630*x^6 + 1656*x^7 +...
		

Crossrefs

Cf. A127782.

Programs

  • PARI
    {a(n)=local(A=x);if(n==0,A=x,for(i=1,n,A=x/(1-subst(A,x,x+x^2 +x*O(x^n))))); polcoeff(A,n)}
Showing 1-9 of 9 results.