cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127782 G.f. satisfies A(x) = 1 + x*A(x+x^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 114, 438, 1845, 8458, 41823, 221539, 1250269, 7481758, 47278652, 314374316, 2192798077, 16000160519, 121831654450, 965946444587, 7958739329386, 68023023892680, 602115897105136, 5511499584735858
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Comments

Equals eigensequence of triangle A026729. - Gary W. Adamson, Jan 16 2009
In Barry[2011] on page 9 is Example 12 where the first column of the eigentriangle of the skew binomial matrix is this sequence. - Michael Somos, Oct 03 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 114*x^7 + ... - _Michael Somos_, Oct 03 2024
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*binomial(n-i, i-1), i=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nmax = 20; b = ConstantArray[0, nmax]; b[[1]] = 1; Do[b[[n+2]] = Sum[Binomial[n-k, k]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax-2}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
    a[ n_] := If[n<1, Boole[n==0], a[n] = Sum[Binomial[k, n-1-k] * a[k], {k, 0, n-1}]]; (* Michael Somos, Oct 03 2024 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+x*subst(A,x,x+x^2)); polcoeff(A,n)
    
  • PARI
    a(n)=if(n==0, 1, sum(k=0, (n-1)\2,binomial(n-1-k,k)*a(n-1-k))); \\ corrected by Seiichi Manyama, Feb 25 2023
    
  • PARI
    {a(n) = my(A = 1 + O(x)); for(k=1, n, A = 1 + x*subst(A, x, x+x^2)); polcoeff(A, n)}; /* Michael Somos, Oct 03 2024 */

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k,k) * a(n-1-k) for n>0 with a(0)=1. [corrected by Seiichi Manyama, Feb 25 2023]
a(n) ~ c * Bell(n) * LambertW(n) / (n*exp(LambertW(n)^2/2)), where c = 1.93210869..., or a(n) ~ c * exp(n/LambertW(n) - LambertW(n)^2/2 - 1 - n) * n^(n-1) / (LambertW(n)^(n-1) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Mar 12 2014
a(n) = Sum_{k=0..n-1} binomial(k, n-k-1) * a(k) for n>0 with a(0)=1. (from Barry[2011]) - Michael Somos, Oct 03 2024

A360885 G.f. satisfies A(x) = 1 + x * A(x * (1 + x^2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 16, 39, 93, 246, 671, 1884, 5578, 16887, 52854, 170649, 563703, 1914366, 6649798, 23610987, 85689987, 317054427, 1196183592, 4595744763, 17965311672, 71426213637, 288535755417, 1183807706841, 4929801601890, 20825803784129, 89210585925338
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, binomial(i-1-2*j, j)*v[i-2*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1-2*k,k) * a(n-1-2*k).

A360897 G.f. satisfies A(x) = 1 + x * A(x * (1 - x^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, -2, -5, -9, -8, 7, 48, 120, 161, -18, -798, -2486, -4088, -692, 19840, 71159, 130467, 31737, -688014, -2644266, -5066453, -866551, 31217375, 121457519, 231494879, -10834753, -1756652362, -6638239650, -12044755426, 5372265122, 117373545212
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, (-1)^j*binomial(i-1-3*j, j)*v[i-3*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (-1)^k * binomial(n-1-3*k,k) * a(n-1-3*k).
Showing 1-3 of 3 results.