cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127782 G.f. satisfies A(x) = 1 + x*A(x+x^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 114, 438, 1845, 8458, 41823, 221539, 1250269, 7481758, 47278652, 314374316, 2192798077, 16000160519, 121831654450, 965946444587, 7958739329386, 68023023892680, 602115897105136, 5511499584735858
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Comments

Equals eigensequence of triangle A026729. - Gary W. Adamson, Jan 16 2009
In Barry[2011] on page 9 is Example 12 where the first column of the eigentriangle of the skew binomial matrix is this sequence. - Michael Somos, Oct 03 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 114*x^7 + ... - _Michael Somos_, Oct 03 2024
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*binomial(n-i, i-1), i=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nmax = 20; b = ConstantArray[0, nmax]; b[[1]] = 1; Do[b[[n+2]] = Sum[Binomial[n-k, k]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax-2}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
    a[ n_] := If[n<1, Boole[n==0], a[n] = Sum[Binomial[k, n-1-k] * a[k], {k, 0, n-1}]]; (* Michael Somos, Oct 03 2024 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+x*subst(A,x,x+x^2)); polcoeff(A,n)
    
  • PARI
    a(n)=if(n==0, 1, sum(k=0, (n-1)\2,binomial(n-1-k,k)*a(n-1-k))); \\ corrected by Seiichi Manyama, Feb 25 2023
    
  • PARI
    {a(n) = my(A = 1 + O(x)); for(k=1, n, A = 1 + x*subst(A, x, x+x^2)); polcoeff(A, n)}; /* Michael Somos, Oct 03 2024 */

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k,k) * a(n-1-k) for n>0 with a(0)=1. [corrected by Seiichi Manyama, Feb 25 2023]
a(n) ~ c * Bell(n) * LambertW(n) / (n*exp(LambertW(n)^2/2)), where c = 1.93210869..., or a(n) ~ c * exp(n/LambertW(n) - LambertW(n)^2/2 - 1 - n) * n^(n-1) / (LambertW(n)^(n-1) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Mar 12 2014
a(n) = Sum_{k=0..n-1} binomial(k, n-k-1) * a(k) for n>0 with a(0)=1. (from Barry[2011]) - Michael Somos, Oct 03 2024

A360896 G.f. satisfies A(x) = 1 + x * A(x * (1 - x^2)).

Original entry on oeis.org

1, 1, 1, 1, 0, -2, -5, -4, 9, 39, 46, -101, -516, -624, 2021, 9704, 8847, -58363, -230932, -65902, 2085381, 6301393, -5195375, -84748630, -174659303, 535875052, 3703162955, 3578704451, -39485091237, -163826467050, 88095454403, 2675998434838, 6571312338031
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\3, (-1)^j*binomial(i-1-2*j, j)*v[i-2*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} (-1)^k * binomial(n-1-2*k,k) * a(n-1-2*k).

A360897 G.f. satisfies A(x) = 1 + x * A(x * (1 - x^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, -2, -5, -9, -8, 7, 48, 120, 161, -18, -798, -2486, -4088, -692, 19840, 71159, 130467, 31737, -688014, -2644266, -5066453, -866551, 31217375, 121457519, 231494879, -10834753, -1756652362, -6638239650, -12044755426, 5372265122, 117373545212
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, (-1)^j*binomial(i-1-3*j, j)*v[i-3*j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} (-1)^k * binomial(n-1-3*k,k) * a(n-1-3*k).

A360992 G.f. satisfies A(x) = 1 + x * (1 - x)^2 * A(x * (1 - x)).

Original entry on oeis.org

1, 1, -1, -3, 4, 12, -38, -33, 428, -696, -3640, 23140, -24766, -358024, 2254416, -2636188, -48229769, 372329934, -777177980, -8375653981, 92394060425, -351172999190, -1461026905290, 30190430840555, -192411489098224, 66898238530023, 11177278011895383
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (-1)^j*binomial(i+1-j, j)*v[i-j])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^k * binomial(n+1-k,k) * a(n-1-k).
Showing 1-4 of 4 results.